A060006 Decimal expansion of real root of x^3 - x - 1 (the plastic constant).
1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1
Offset: 1
Examples
1.32471795724474602596090885447809734...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
- Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII.
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236.
- Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Alex Bellos, The golden ratio has spawned a beautiful new curve: the Harriss spiral, The Guardian, Jan 13 2015.
- Gamaliel Cerda-Morales, New Identities for Padovan Numbers, arXiv:1904.05492 [math.CO], 2019.
- Brady Haran and Edmund Harriss, The Plastic Ratio, Numberphile video (2019).
- Ed Pegg Jr., Pictures based on the plastic constant
- Simon Plouffe, Smallest Pisot-Vijayaraghavan number to 50000 digits
- Simon Plouffe, The Smallest Pisot-Vijayaraghavan number
- F. Rothelius, Formulae.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Dom Hans van der Laan, Le nombre plastique: Quinze leçons sur l’ordonnance architectonique, Brill Academic Pub., Leiden, 1960.
- Michel Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
- Eric Weisstein's World of Mathematics, Maverick Graph.
- Eric Weisstein's World of Mathematics, Pisot Number.
- Eric Weisstein's World of Mathematics, Plastic Constant.
- Wikipedia, Plastic number.
- Index entries for algebraic numbers, degree 3
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019
-
Maple
(1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%,130) ; # R. J. Mathar, Jan 22 2013
-
Mathematica
RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Sep 30 2009 *) s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 12 2017 *) RealDigits[Root[x^3-x-1,1],10,120][[1]] (* or *) RealDigits[(Surd[9-Sqrt[69],3]+Surd[9+Sqrt[69],3])/(Surd[2,3]Surd[9,3]),10,120][[1]] (* Harvey P. Dale, Sep 04 2018 *)
-
PARI
allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009
-
PARI
(1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016
-
PARI
polrootsreal(x^3-x-1)[1] \\ Charles R Greathouse IV, Aug 28 2016
-
PARI
default(realprecision, 110); digits(floor(solve(x=1, 2, x^3 - x - 1)*10^105)) /* Michael Somos, Mar 24 2023 */
-
Sage
numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019
Formula
Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003
Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004
Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006
Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008
Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015
Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020
Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021
Equals 1/hypergeom([1/5, 2/5, 3/5, 4/5], [2/4, 3/4, 5/4], -5^5/4^4). - Gerry Martens, Mar 16 2025
Extensions
Edited and extended by Robert G. Wilson v, Aug 03 2002
Removed incorrect comments, Joerg Arndt, Apr 10 2016
Comments