A060007 Decimal expansion of the positive real root of x^4 - x - 1.
1, 2, 2, 0, 7, 4, 4, 0, 8, 4, 6, 0, 5, 7, 5, 9, 4, 7, 5, 3, 6, 1, 6, 8, 5, 3, 4, 9, 1, 0, 8, 8, 3, 1, 9, 1, 4, 4, 3, 2, 4, 8, 9, 0, 8, 6, 2, 4, 8, 6, 3, 5, 2, 1, 4, 2, 8, 8, 2, 4, 4, 4, 5, 3, 0, 4, 9, 7, 1, 0, 0, 0, 8, 5, 2, 2, 5, 9, 1, 3, 5, 0, 2, 5, 3, 0, 9, 5, 5, 2, 1, 8, 6, 9, 9, 6, 2, 8, 6, 2, 5, 7, 4, 0, 1
Offset: 1
Examples
v_4 = 1.220744084605759475361685349...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- David W. Boys, The maximal modulus of an algebraic integer, Math. Comp. 45 (1985) 243-249, table page S18.
- F. Rothelius, Formulae
- Qiang Wu, The smallest Perron numbers, Math. Comp. 79 (2010) 2387-2394
- Index entries for algebraic numbers, degree 4
Crossrefs
Programs
-
Maple
r:=(108+12*sqrt(849))^(1/3): (sqrt(12/sqrt(-8/r+r/6)+48/r-r) + sqrt(-48/r+r))/(2*sqrt(6)): evalf(%,105); # Vaclav Kotesovec, Oct 12 2013
-
Mathematica
RealDigits[x/.FindRoot[x^4==x+1,{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jul 11 2012 *) Root[ #^4 - # - 1&, 2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 04 2013 *)
-
PARI
default(realprecision, 110); digits(floor(solve(x=1, 2, x^4 - x - 1)*10^105)) /* Michael Somos, Mar 22 2023 */
Formula
Equals (1 + (1 + (1 + (1 + (1 + ...)^(1/4))^(1/4))^(1/4))^(1/4))^(1/4). - Ilya Gutkovskiy, Dec 15 2017
v_4 = (sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)), ep = (-1 + sqrt(3)*i)/2 and i = sqrt(-1).
For the trigonometric equivalent u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))). - Wolfdieter Lang, Aug 27 2022
Equals 1 + Sum_{n >= 1} (1/4)^n*(Product_{j=1..n-1} 1 + n - 4*j)/n!. - Antonio Graciá Llorente, Dec 13 2024
Extensions
More terms from Benoit Cloitre, Jan 11 2003
Simplified definition from M. F. Hasler, Jul 12 2025
Comments