cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017817 a(n) = a(n-3) + a(n-4), with a(0)=1, a(1)=a(2)=0, a(3)=1.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 2, 4, 6, 5, 6, 10, 11, 11, 16, 21, 22, 27, 37, 43, 49, 64, 80, 92, 113, 144, 172, 205, 257, 316, 377, 462, 573, 693, 839, 1035, 1266, 1532, 1874, 2301, 2798, 3406, 4175, 5099, 6204, 7581, 9274, 11303, 13785, 16855, 20577, 25088
Offset: 0

Views

Author

Keywords

Comments

Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=3, I={0,1}. - Vladimir Baltic, Mar 07 2012
Number of compositions (ordered partitions) of n into parts 3 and 4.
For n>=2, a(n-2) is the number of ways to tile the 1xn board with dominoes and squares (ie. monominoes) such that there are either one or two squares between dominoes, no squares at either end of the board, and there is at least one domino. - Enrique Navarrete, Sep 01 2024
For n>=3, a(n-3) is the number of ways to tile the 1xn board with triominoes (ie. size 1x3) and squares (ie. size 1x1) such that there are either none or one squares between triominoes, no squares at either end of the board, and there is at least one triomino. - Enrique Navarrete, Sep 07 2024

Crossrefs

A003269(n) = a(-4-n)(-1)^n.

Programs

  • GAP
    a:=[1,0,0,1];; for n in [5..60] do a[n]:=a[n-3]+a[n-4]; od; a; # G. C. Greubel, Mar 05 2019
  • Magma
    I:=[1,0,0,1]; [n le 4 select I[n] else Self(n-3) +Self(n-4): n in [1..60]]; // G. C. Greubel, Mar 05 2019
    
  • Mathematica
    LinearRecurrence[{0,0,1,1}, {1,0,0,1}, 60] (* G. C. Greubel, Mar 05 2019 *)
  • PARI
    a(n)=polcoeff(if(n<0,(1+x)/(1+x-x^4),1/(1-x^3-x^4)) +x*O(x^abs(n)), abs(n))
    
  • Sage
    (1/(1-x^3-x^4)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 05 2019
    

Formula

G.f.: 1/(1-x^3-x^4).
a(n)/a(n-1) tends to A060007. - Gary W. Adamson, Oct 22 2006
a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k). - Seiichi Manyama, Mar 06 2019

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999

A160155 Decimal expansion of the one real root of x^5-x-1.

Original entry on oeis.org

1, 1, 6, 7, 3, 0, 3, 9, 7, 8, 2, 6, 1, 4, 1, 8, 6, 8, 4, 2, 5, 6, 0, 4, 5, 8, 9, 9, 8, 5, 4, 8, 4, 2, 1, 8, 0, 7, 2, 0, 5, 6, 0, 3, 7, 1, 5, 2, 5, 4, 8, 9, 0, 3, 9, 1, 4, 0, 0, 8, 2, 4, 4, 9, 2, 7, 5, 6, 5, 1, 9, 0, 3, 4, 2, 9, 5, 2, 7, 0, 5, 3, 1, 8, 0, 6, 8, 5, 2, 0, 5, 0, 4, 9, 7, 2, 8, 6, 7, 2, 8, 9, 5, 3, 5
Offset: 1

Views

Author

Harry J. Smith, May 03 2009

Keywords

Comments

The other (complex) roots are 0.181232444469875383... + 1.08395410131771066...*i, and -0.764884433600584726... + 0.352471546031726249...*i, together with their complex conjugates. - Wolfdieter Lang, Dec 15 2022
This quintic is in some sense the smallest and/or simplest algebraic equation for which there is no explicit expression for the roots. (The "equivalent" quintic x^5 - x + 1 has the opposite real root, x = -1.1673..., while x^5 + x + 1 = (x^2 + x + 1)(x^3 - x^2 + 1).) - M. F. Hasler, Jul 12 2025

Examples

			1.16730397826141868425604589985484218072056037152548903914008244927565...
		

Crossrefs

Cf. A039922 (continued fraction), A001622 (golden ratio phi = root of x^2 - x - 1), A060006 (plastic constant, root of x^3 - x - 1), A060007 (root of x^4 - x - 1).

Programs

  • Mathematica
    RealDigits[Root[x^5-x-1, x, 1], 10, 105] // First (* Jean-François Alcover, Jul 09 2015 *)
  • PARI
    localprec(20080); r=real(polroots('x^5 - 'x - 1)[1]); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b160155.txt", n, " ", d)) \\ Edited by M. F. Hasler, Jul 12 2025
    
  • PARI
    polrootsreal(x^5-x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals (1 + (1 + (1 + (1 + (1 + ...)^(1/5))^(1/5))^(1/5))^(1/5))^(1/5). - Ilya Gutkovskiy, Dec 15 2017

A230163 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=10.

Original entry on oeis.org

1, 0, 7, 5, 7, 6, 6, 0, 6, 6, 0, 8, 6, 8, 3, 7, 1, 5, 8, 0, 5, 9, 5, 9, 9, 5, 2, 4, 1, 6, 5, 2, 7, 5, 8, 2, 0, 6, 9, 2, 5, 3, 0, 2, 4, 7, 6, 3, 9, 2, 0, 3, 2, 7, 9, 4, 7, 7, 0, 6, 8, 3, 9, 4, 5, 4, 4, 4, 7, 2, 6, 2, 6, 9, 5, 8, 5, 8, 2, 1, 6, 1, 9, 3, 3, 6, 1
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=10.

Examples

			1.0757660660868371580595995241652758206925302476392032794...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,10);
  • Mathematica
    Root[x^10 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
  • PARI
    polrootsreal(x^10-x-1)[2] \\ Charles R Greathouse IV, Feb 11 2025

A230159 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=6.

Original entry on oeis.org

1, 1, 3, 4, 7, 2, 4, 1, 3, 8, 4, 0, 1, 5, 1, 9, 4, 9, 2, 6, 0, 5, 4, 4, 6, 0, 5, 4, 5, 0, 6, 4, 7, 2, 8, 4, 0, 2, 7, 9, 6, 6, 7, 2, 2, 6, 3, 8, 2, 8, 0, 1, 4, 8, 5, 9, 2, 5, 1, 4, 9, 5, 5, 1, 6, 6, 8, 2, 3, 6, 8, 9, 3, 9, 9, 9, 8, 4, 2, 6, 7, 1, 2, 7, 9, 6, 8
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=6.

Examples

			1.1347241384015194926054460545064728402796672263828014859...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,6);
  • Mathematica
    Root[x^6 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230160 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=7.

Original entry on oeis.org

1, 1, 1, 2, 7, 7, 5, 6, 8, 4, 2, 7, 8, 7, 0, 5, 4, 7, 0, 6, 2, 9, 7, 0, 4, 0, 2, 0, 5, 7, 1, 0, 9, 2, 9, 3, 5, 6, 0, 6, 8, 5, 9, 2, 7, 1, 8, 5, 5, 2, 8, 3, 6, 8, 1, 4, 8, 5, 7, 0, 1, 6, 2, 8, 0, 0, 7, 1, 6, 6, 3, 3, 2, 5, 7, 9, 5, 2, 8, 4, 4, 3, 4, 5, 9, 2, 7
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=7.

Examples

			1.1127756842787054706297040205710929356068592718552836814...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,7);
  • Mathematica
    Root[x^7 - x - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230161 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=8.

Original entry on oeis.org

1, 0, 9, 6, 9, 8, 1, 5, 5, 7, 7, 9, 8, 5, 5, 9, 8, 1, 7, 9, 0, 8, 2, 7, 8, 9, 6, 7, 1, 6, 7, 5, 3, 7, 0, 8, 9, 5, 9, 2, 5, 3, 0, 1, 0, 8, 2, 1, 2, 7, 8, 6, 7, 1, 3, 8, 1, 2, 3, 2, 8, 8, 5, 1, 2, 4, 8, 5, 5, 8, 9, 8, 0, 5, 9, 9, 0, 1, 8, 4, 9, 3, 4, 7, 2, 2, 0
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=8.

Examples

			1.0969815577985598179082789671675370895925301082127867138...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,8);
  • Mathematica
    Root[x^8 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230162 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=9.

Original entry on oeis.org

1, 0, 8, 5, 0, 7, 0, 2, 4, 5, 4, 9, 1, 4, 5, 0, 8, 2, 8, 3, 3, 6, 8, 9, 5, 8, 6, 4, 0, 9, 7, 3, 1, 4, 2, 3, 4, 0, 5, 0, 6, 5, 3, 6, 3, 1, 0, 3, 0, 8, 9, 6, 5, 8, 1, 4, 6, 8, 6, 1, 5, 5, 3, 3, 3, 6, 5, 1, 8, 0, 4, 9, 9, 4, 0, 1, 1, 5, 7, 1, 9, 9, 7, 4, 1, 9, 3
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=9.

Examples

			1.0850702454914508283368958640973142340506536310308965814...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,9);
  • Mathematica
    Root[(#^9-#-1)&, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[x/.FindRoot[x^9-x-1==0,{x,1},WorkingPrecision->100]][[1]] (* Harvey P. Dale, Jul 31 2017 *)

A298813 Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x + 1.

Original entry on oeis.org

1, 4, 9, 0, 2, 1, 6, 1, 2, 0, 0, 9, 9, 9, 5, 3, 6, 4, 8, 1, 1, 6, 3, 8, 6, 8, 4, 2, 3, 7, 8, 6, 2, 6, 7, 4, 2, 9, 0, 1, 2, 4, 2, 3, 0, 7, 3, 2, 4, 8, 9, 1, 0, 2, 4, 4, 1, 0, 8, 4, 9, 6, 3, 7, 1, 5, 6, 1, 1, 5, 5, 0, 1, 5, 1, 6, 4, 0, 8, 7, 8, 3, 1, 1, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2018

Keywords

Comments

Let (d(n)) = (1,0,1,0,1,0,1,...), s(n) = sqrt(s(n-1) + d(n)) for n > 0, and s(0) = 1.
Then s(2n) -> 1.49021612009995..., as in A298813;
and s(2n+1) -> 1.22074408..., as in A060007.
Let (e(n)) = (0,1,0,1,0,1,0,...), t(n) = sqrt(t(n-1) + e(n)) for n > 0, and t(0) = 1.
Then t(2n) -> 1.22074408..., as in A060007;
and t(2n+1) -> 1.49021612009995..., as in A298813.
The four solutions are: x1, this one; x2, the least A072223; and the two complex ones x3=-1.007552359378... + 0.513115795597...*i and x4, its complex conjugate; Re(x3) = Re(x4) = -(x1+x2)/2; Im(x3) = -Im(x4) = sqrt(1/(x1*x2) - Re(x3)^2). - Andrea Pinos, Sep 20 2023

Examples

			1.49021612009995...
		

Crossrefs

Programs

  • Mathematica
    r = x /. NSolve[x^4 - 2 x^2 - x + 1 == 0, x, 100][[4]];
    RealDigits[r][[1]]; (* A298813 *)
    RealDigits[Root[x^4-2x^2-x+1,2],10,120][[1]] (* Harvey P. Dale, May 02 2022 *)
  • PARI
    solve(x=1, 2, x^4 - 2*x^2 - x + 1) \\ Michel Marcus, Nov 05 2018

Formula

Equals sqrt((1 + 2*cos(arccos(155/128)/3))/3) + sqrt(2/3 - 2*cos(arccos(155/128)/3)/3 + sqrt(3/(1 + 2*cos(arccos(155/128)/3)))/4). - Vaclav Kotesovec, Sep 21 2023
Equals sqrt(1/3 + s/9 + 1/s) + sqrt(2/3 - s/9 - 1/s + 1 / (4 * sqrt(1/3 + s/9 + 1/s))) where s = (4185/128 + sqrt(5570289/16384))^(1/3). - Michal Paulovic, Dec 30 2023

A356032 Decimal expansion of the positive real root of x^4 + x - 1.

Original entry on oeis.org

7, 2, 4, 4, 9, 1, 9, 5, 9, 0, 0, 0, 5, 1, 5, 6, 1, 1, 5, 8, 8, 3, 7, 2, 2, 8, 2, 1, 8, 7, 0, 3, 6, 5, 6, 5, 7, 8, 6, 4, 9, 4, 4, 8, 1, 3, 5, 0, 0, 1, 1, 0, 1, 7, 2, 7, 0, 3, 9, 8, 0, 2, 8, 4, 3, 7, 4, 5, 2, 9, 0, 6, 4, 7, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 27 2022

Keywords

Comments

The other real (negative) root is -A060007.
One of the pair of complex conjugate roots is obtained by negating sqrt(2*u) and sqrt(u) in the formula for r below, giving 0.248126062... - 1.033982060...*i.
Also, the absolute value of the negative real root of x^4 - x - 1, cf. A060007. - M. F. Hasler, Jul 12 2025

Examples

			r = 0.724491959000515611588372282187036565786494481350011017270...
		

Crossrefs

Cf. A060007 (positive root of x^4 - x - 1), A072223, A086106, A202538, A376658.

Programs

  • Mathematica
    First[RealDigits[x/.N[{x->Root[-1+#1+#1^4 &,2,0]},75]]] (* Stefano Spezia, Aug 27 2022 *)
  • PARI
    solve(x=0, 1, x^4 + x - 1) \\ Michel Marcus, Aug 28 2022
    
  • PARI
    polrootsreal(x^4 + x - 1)[2] \\ M. F. Hasler, Jul 12 2025

Formula

r = (-sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)) and ep = (-1 + sqrt(3)*i)/2, with i = sqrt(-1). For the trigonometric version set u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))).
Equals sqrt(A072223) = 1/A086106 = 1/exp(A202538). - Hugo Pfoertner, Jul 13 2025

A337571 Decimal expansion of the real positive solution to x^4 = x+4.

Original entry on oeis.org

1, 5, 3, 3, 7, 5, 1, 1, 6, 8, 7, 5, 5, 2, 0, 4, 2, 8, 8, 1, 1, 8, 0, 4, 1, 4, 1, 3, 2, 8, 2, 2, 2, 6, 8, 3, 6, 7, 0, 9, 7, 2, 3, 6, 3, 4, 5, 5, 0, 4, 8, 2, 0, 8, 1, 5, 4, 2, 0, 3, 7, 6, 0, 3, 9, 6, 8, 3, 9, 9, 1, 9, 9, 8, 9, 1, 5, 6, 1, 6, 2, 4, 6, 9, 3, 9, 8, 8, 1, 7, 6, 2, 3, 3, 5, 5, 9
Offset: 1

Views

Author

Michal Paulovic, Sep 01 2020

Keywords

Comments

x = (4 + (4 + (4 + ... )^(1/4))^(1/4))^(1/4).
The negative value (-1.5337511687...) is the real negative solution to x^4 = 4-x.

Examples

			1.5337511687552...
		

Crossrefs

Programs

  • MATLAB
    format long; solve('x^4-x-4=0'); ans(1), (eval(ans))
  • Mathematica
    RealDigits[x /. FindRoot[x^4 - x - 4, {x, 1}, WorkingPrecision -> 100], 10, 90][[1]] (* Amiram Eldar, Sep 03 2020 *)
  • PARI
    solve(n=0,2,n^4-n-4)
    
  • PARI
    polroots(n^4-n-4)[2]
    
  • PARI
    polrootsreal(n^4-n-4)[2] \\ Charles R Greathouse IV, Oct 27 2023
    

Formula

Equals sqrt(sqrt(1/s) - s/16) + sqrt(s/16) where s = (sqrt(16804864/27) + 32)^(1/3) - (sqrt(16804864/27) - 32)^(1/3). [Simplified by Michal Paulovic, Jun 22 2021]
Showing 1-10 of 11 results. Next