cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A048298 a(n) = n if n=2^i for i >= 0, otherwise a(n) = 0.

Original entry on oeis.org

0, 1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Expand x/(x-1) = Sum_{n >= 0} 1/x^n as Sum a(n) / (1+x^n).
Nim-binomial transform of the natural numbers. If {t(n)} is the Nim-binomial transform of {a(n)}, then t(n)=(S^n)a(0), where Sf(n) denotes the Nim-sum of f(n) and f(n+1); and S^n=S(S^(n-1)). - John W. Layman, Mar 06 2001

Crossrefs

A kind of inverse to A048272. Cf. A060147.
This is Guy Steele's sequence GS(5, 1) (see A135416).
Cf. A209229 (characteristic function of powers of 2).

Programs

  • Haskell
    a048298 n = a209229 n * n  -- Reinhard Zumkeller, Oct 17 2015
    
  • Magma
    [n eq 2^Valuation(n,2) select n else 0: n in [0..120]]; // Vincenzo Librandi, improved by Bruno Berselli, Mar 27 2015
    
  • Maple
    0, seq(op([2^n,0$(2^n-1)]), n=0..10); # Robert Israel, Mar 25 2015
    a := n -> if n = 2^ilog2(n) then n else 0 fi: # Peter Luschny, Oct 03 2022
  • Mathematica
    Table[n*Boole[Or[n == 1, First /@ FactorInteger@ n == {2}]], {n, 0, 120}] (* Michael De Vlieger, Mar 25 2015 *)
    a[n_] := If[n == 2^IntegerExponent[n, 2], n, 0]; Array[a, 100, 0] (* Amiram Eldar, Oct 10 2023 *)
  • PARI
    a(n)=direuler(p=1,n,if(p==2,1/(1-2*X),1))[n] /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    a(n) = if(n == 0, 0, if(n == 1 << valuation(n, 2), n, 0)); \\ Amiram Eldar, Oct 10 2023
    
  • Python
    def A048298(n): return n if n and not(n&-n)^n else 0 # Chai Wah Wu, Dec 01 2022

Formula

Multiplicative with a(2^e)=2^e and a(p^e)=0 for p > 2. - Vladeta Jovovic, Jan 27 2002
Inverse mod 2 binomial transform of n. a(n) = sum{k=0..n, (-1)^A010060(n-k)*mod(C(n, k), 2)*k}. - Paul Barry, Jan 03 2005
If n=1 we have a(n)=1; if n=p is prime, then (-1)^(p+1)+a(p)=1, thus a(2)=2, and a(p)=0, if p>2. - Vladimir Shevelev, Jun 09 2009
Dirichlet g.f.: 2^s/(2^s-2). - Ralf Stephan, Jun 17 2007
Dirichlet g.f.: zeta(s)/eta(s). - Ralf Stephan, Mar 25 2015
For n>=1, we have a recursion Sum_{d|n}(-1)^(1+(n/d))a(d)=1. - Vladimir Shevelev, Jun 09 2009
For n>=1, there is the recurrence n=Sum_{k=1..n} a(k)*g(n/k) where g(x) = floor(x) - 2*floor(x/2). - Benoit Cloitre, Nov 11 2010
a(n) = A209229(n)*n. - Reinhard Zumkeller, Oct 17 2015
a(n) = n if 2^n mod n == 0 and a(n) = 0 otherwise. - Chai Wah Wu, Dec 01 2022

Extensions

More terms from Keiko L. Noble (s1180624(AT)cedarville.edu)
Showing 1-1 of 1 results.