cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060279 Number of labeled rooted trees with all 2n nodes of odd degree.

Original entry on oeis.org

2, 16, 576, 47104, 6860800, 1562148864, 512260833280, 228646878969856, 133296779352342528, 98349146136012390400, 89583293999931442855936, 98732413018143104723582976, 129497500112719525122855141376, 199333356644821012200519079297024
Offset: 1

Views

Author

Vladeta Jovovic, Mar 28 2001

Keywords

Comments

There are no such trees with an odd number of nodes.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Cf. A007106.

Programs

  • Magma
    A060279:= func< n | n eq 1 select 2 else n*(&+[Binomial(2*n,k)*(n-k)^(2*n-2) : k in [0..n-1]]) >;
    [A060279(n): n in [1..30]]; // G. C. Greubel, Nov 05 2024
    
  • Maple
    a:= j-> (n-> (n/2^n)*add(binomial(n, k)*(n-2*k)^(n-2), k=0..n))(2*j):
    seq(a(n), n=1..15);  # Alois P. Heinz, Sep 27 2020
  • Mathematica
    Flatten[{2,Table[n/2^n*Sum[Binomial[n,k]*(n-2*k)^(n-2),{k,0,n}],{n,4,30,2}]}] (* Vaclav Kotesovec, Jan 23 2014 *)
    A060279[n_]:= n*Sum[Binomial[2*n,k]*(n-k)^(2*n-2), {k,0,n-1}] +Boole[n==1];
    Table[A060279[n], {n,40}] (* G. C. Greubel, Nov 05 2024 *)
  • PARI
    a(n) = n/2^n*sum(k=0, n, binomial(n, k)*(n-2*k)^(n-2)) \\ Michel Marcus, Jun 17 2013
    
  • SageMath
    def A060279(n): return n*sum( binomial(2*n,k)*(n-k)^(2*n-2) for k in range(n)) + int(n==1)
    [A060279(n) for n in range(1,41)] # G. C. Greubel, Nov 05 2024

Formula

a(n) = (n/2^n)*Sum_{k=0..n} binomial(n, k)*(n-2*k)^(n-2).
a(n) = 2*n * A007106(n).
a(n) ~ sqrt(1+s^2) * s^(2*n-1) * 2^(2*n) * n^(2*n-1) / exp(2*n), where s = 1.5088795615383199289... is the root of the equation sqrt(1+s^2) = s*log(s+sqrt(1+s^2)). - Vaclav Kotesovec, Jan 23 2014