A060354 The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.
0, 1, 2, 6, 16, 35, 66, 112, 176, 261, 370, 506, 672, 871, 1106, 1380, 1696, 2057, 2466, 2926, 3440, 4011, 4642, 5336, 6096, 6925, 7826, 8802, 9856, 10991, 12210, 13516, 14912, 16401, 17986, 19670, 21456, 23347, 25346, 27456, 29680, 32021
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- D. W. Cranston, I. H. Sudborough, and D. B. West, Short proofs for cut-and-paste sorting of permutations, Discrete Math. 307, 22 (2007), 2866-2870.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- C. Homberger and V. Vatter, On the effective and automatic enumeration of polynomial permutation classes. [Broken link]
- C. Homberger and V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946 [math.CO], 2013-2015.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(n*(n-2)^2+n^2)/2: n in [0..50]]; // Vincenzo Librandi, Feb 16 2015
-
Maple
A060354 := proc(n) (n*(n-2)^2+n^2)/2 ; end proc: # R. J. Mathar, Jul 28 2016
-
Mathematica
Table[(n (n-2)^2+n^2)/2,{n,0,50}] (* Harvey P. Dale, Aug 05 2011 *) CoefficientList[Series[x (1 - 2 x + 4 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2015 *) Table[PolygonalNumber[n,n],{n,0,50}] (* Harvey P. Dale, Mar 07 2016 *) LinearRecurrence[{4,-6,4,-1},{0,1,2,6},50] (* Harvey P. Dale, Mar 07 2016 *)
-
PARI
a(n) = { (n*(n - 2)^2 + n^2)/2 } \\ Harry J. Smith, Jul 04 2009
Formula
a(n) = (n*(n-2)^2 + n^2)/2.
E.g.f.: exp(x)*x*(1+x^2/2). - Paul Barry, Sep 14 2006
G.f.: x*(1-2*x+4*x^2)/(1-x)^4. - R. J. Mathar, Sep 02 2008
a(n) = A057145(n,n). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n-2) * n. - Bruce J. Nicholson, Jul 13 2018
a(n) = Sum_{i=0..n-1} (i*(n-2) + 1). - Ivan N. Ianakiev, Sep 25 2020
Comments