cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060354 The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.

Original entry on oeis.org

0, 1, 2, 6, 16, 35, 66, 112, 176, 261, 370, 506, 672, 871, 1106, 1380, 1696, 2057, 2466, 2926, 3440, 4011, 4642, 5336, 6096, 6925, 7826, 8802, 9856, 10991, 12210, 13516, 14912, 16401, 17986, 19670, 21456, 23347, 25346, 27456, 29680, 32021
Offset: 0

Views

Author

Hareendra Yalamanchili (hyalaman(AT)mit.edu), Apr 01 2001

Keywords

Comments

Binomial transform of (0,1,0,3,0,0,0,...). - Paul Barry, Sep 14 2006
Also the number of permutations of length n which can be sorted by a single cut-and-paste move (in the sense of Cranston, Sudborough, and West). - Vincent Vatter, Aug 21 2013
Main diagonal of A317302. - Omar E. Pol, Aug 11 2018
a(n) is the number of ternary strings of length n that contain exactly one 1, zero or two 2's and have no restriction on the number of 0's. For example, a(5) = 35 since the strings are 12200 (30 of this type) and 10000 (5 of this type). - Enrique Navarrete, May 08 2025

Crossrefs

First differences of A004255.

Programs

  • Magma
    [(n*(n-2)^2+n^2)/2: n in [0..50]]; // Vincenzo Librandi, Feb 16 2015
  • Maple
    A060354 := proc(n)
        (n*(n-2)^2+n^2)/2 ;
    end proc: # R. J. Mathar, Jul 28 2016
  • Mathematica
    Table[(n (n-2)^2+n^2)/2,{n,0,50}] (* Harvey P. Dale, Aug 05 2011 *)
    CoefficientList[Series[x (1 - 2 x + 4 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2015 *)
    Table[PolygonalNumber[n,n],{n,0,50}] (* Harvey P. Dale, Mar 07 2016 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,2,6},50] (* Harvey P. Dale, Mar 07 2016 *)
  • PARI
    a(n) = { (n*(n - 2)^2 + n^2)/2 } \\ Harry J. Smith, Jul 04 2009
    

Formula

a(n) = (n*(n-2)^2 + n^2)/2.
E.g.f.: exp(x)*x*(1+x^2/2). - Paul Barry, Sep 14 2006
G.f.: x*(1-2*x+4*x^2)/(1-x)^4. - R. J. Mathar, Sep 02 2008
a(n) = A057145(n,n). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n-2) * n. - Bruce J. Nicholson, Jul 13 2018
a(n) = Sum_{i=0..n-1} (i*(n-2) + 1). - Ivan N. Ianakiev, Sep 25 2020