cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A101357 Partial sums of A060354.

Original entry on oeis.org

0, 1, 3, 9, 25, 60, 126, 238, 414, 675, 1045, 1551, 2223, 3094, 4200, 5580, 7276, 9333, 11799, 14725, 18165, 22176, 26818, 32154, 38250, 45175, 53001, 61803, 71659, 82650, 94860, 108376, 123288, 139689, 157675, 177345, 198801, 222148, 247494
Offset: 0

Views

Author

Jonathan Vos Post, Dec 25 2004

Keywords

Comments

The Ca4 triangle sums of A139600 are given by the terms of this sequence. For the definitions of the Ca4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Programs

  • Magma
    [(n^4-2*n^3+3*n^2+6*n)/8: n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    Table[Sum[(i*(i - 2)^2 + i^2)/2, {i, 0, n}], {n, 0, 38}]
    Accumulate[Table[(n (n-2)^2+n^2)/2,{n,0,50}]] (* Harvey P. Dale, Aug 05 2011 *)
  • PARI
    a(n)=(n^4-2*n^3+3*n^2+6*n)/8 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = Sum_{i=0..n} (i(i-2)^2 + i^2)/2.
a(n) = A004255(n), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 4*binomial(n+1,4).
a(n) = (n^4 - 2*n^3 + 3*n^2 + 6*n)/8. - Johannes W. Meijer, Apr 29 2011
G.f.: -x*(4*x^2 - 2*x + 1) / (x-1)^5. - Colin Barker, Apr 29 2013

Extensions

More terms from Joshua Zucker, May 12 2006
Edited by Stefan Steinerberger, Aug 01 2007

A271319 Number of distinct prime factors of the n-th n-gonal number (A060354).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 4, 2, 2, 3, 4, 3, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 2, 4, 3, 4, 3, 2, 4, 4, 4, 3, 4, 3, 3, 3, 3, 4, 3, 2, 4, 4, 4, 2, 4, 4, 3, 4, 3, 3, 4, 4, 3, 5, 2, 3, 4, 4, 4, 4, 4, 3, 4, 2, 4, 5, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 4
Offset: 2

Views

Author

Colin Barker, Apr 04 2016

Keywords

Examples

			a(7) = 2 because A060354(7) = 112 = 2^4 * 7^1.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[PolygonalNumber[n,n]],{n,2,90}] (* Harvey P. Dale, Sep 24 2023 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    a(n) = omega(pg(n, n))
    vector(100, n, n++; a(n))

Formula

a(n) = A001221(A060354(n)).

A271320 Number of prime factors, with multiplicity, of the n-th n-gonal number (A060354).

Original entry on oeis.org

1, 2, 4, 2, 3, 5, 5, 3, 3, 3, 7, 2, 3, 5, 6, 3, 4, 4, 6, 3, 3, 5, 6, 3, 4, 5, 9, 2, 5, 4, 7, 4, 4, 4, 7, 2, 4, 9, 7, 3, 4, 3, 7, 4, 3, 5, 7, 3, 5, 4, 7, 2, 6, 6, 6, 4, 3, 3, 9, 4, 3, 7, 8, 3, 4, 4, 7, 4, 4, 6, 8, 2, 4, 6, 7, 3, 4, 4, 8, 6, 4, 4, 8, 4, 3, 6
Offset: 2

Views

Author

Colin Barker, Apr 04 2016

Keywords

Examples

			a(7) = 5 because A060354(7) = 112 = 2^4 * 7^1.
		

Crossrefs

Programs

  • Mathematica
    PrimeOmega/@Table[PolygonalNumber[n,n],{n,90}] (* Harvey P. Dale, Feb 08 2025 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    a(n) = bigomega(pg(n, n))
    vector(100, n, n++; a(n))

Formula

a(n) = A001222(A060354(n)).

A271321 Smallest prime factor of the n-th n-gonal number (A060354).

Original entry on oeis.org

2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 13, 2, 2, 2, 11, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 29, 2, 2, 2, 3, 2, 2, 2, 37, 2, 2, 2, 11, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 53, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 73, 2, 2, 2, 7, 2, 2, 2, 3, 2, 2, 2, 5
Offset: 2

Views

Author

Colin Barker, Apr 04 2016

Keywords

Examples

			a(5) = 5 because A060354(5) = 35 = 5 * 7.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[PolygonalNumber[n,n]][[1,1]],{n,2,90}] (* Harvey P. Dale, Feb 26 2022 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    spf(m) = factorint(m)[1, 1] \\ Smallest prime factor
    a(n) = spf(pg(n, n))
    vector(100, n, n++; a(n))

Formula

a(n) = A020639(A060354(n)).

A271322 Largest prime factor of the n-th n-gonal number (A060354).

Original entry on oeis.org

2, 3, 2, 7, 11, 7, 11, 29, 37, 23, 7, 67, 79, 23, 53, 17, 137, 19, 43, 191, 211, 29, 127, 277, 43, 163, 11, 379, 37, 109, 233, 71, 23, 281, 149, 631, 29, 13, 53, 71, 821, 431, 113, 947, 991, 47, 541, 1129, 107, 613, 29, 1327, 197, 179, 743, 67, 1597, 827
Offset: 2

Views

Author

Colin Barker, Apr 04 2016

Keywords

Examples

			a(5) = 7 because A060354(5) = 35 = 5 * 7.
		

Crossrefs

Programs

  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    lpf(m) = vecmax(factorint(m)[, 1]) \\ Largest prime factor
    a(n) = lpf(pg(n, n))
    vector(100, n, n++; a(n))

Formula

a(n) = A006530(A060354(n)).

A162609 Triangle read by rows in which row n lists n terms, starting with 1, with gaps = n-2 between successive terms.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 7, 1, 4, 7, 10, 13, 1, 5, 9, 13, 17, 21, 1, 6, 11, 16, 21, 26, 31, 1, 7, 13, 19, 25, 31, 37, 43, 1, 8, 15, 22, 29, 36, 43, 50, 57, 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 1, 11, 21, 31, 41, 51, 61, 71, 81
Offset: 1

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Equals A081493 when first column is removed. - Georg Fischer, Jul 25 2023

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  3;
  1,  3,  5,  7;
  1,  4,  7, 10, 13;
  1,  5,  9, 13, 17, 21;
  1,  6, 11, 16, 21, 26, 31;
		

Crossrefs

Cf. A060354 (row sums), A081493 (without first column).

Programs

  • Mathematica
    Table[NestList[#+(n-2)&,1,n-1],{n,20}]//Flatten (* Harvey P. Dale, Oct 23 2017 *)

Formula

T(n,n) = A002061(n-1).
T(n,k) = A076110(n-1,k) = 1+(n-2)*(k-1). - R. J. Mathar, Mar 30 2023

A081422 Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Examples

			The array starts
  1  1  3 10 ...
  1  2  6 16 ...
  1  3  9 22 ...
  1  4 12 28 ...
The triangle starts
  1;
  1,  1;
  1,  2,  3;
  1,  3,  6, 10;
  1,  4,  9, 16, 25;
  ...
		

Crossrefs

Antidiagonals are composed of n-gonal numbers.

Programs

  • GAP
    Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
  • Magma
    [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
    
  • Mathematica
    Table[PolygonalNumber[n,i],{n,0,10},{i,n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
    
  • Sage
    [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
    

Formula

Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015

A100177 Structured meta-prism numbers, the n-th number from a structured n-gonal prism number sequence.

Original entry on oeis.org

1, 4, 18, 64, 175, 396, 784, 1408, 2349, 3700, 5566, 8064, 11323, 15484, 20700, 27136, 34969, 44388, 55594, 68800, 84231, 102124, 122728, 146304, 173125, 203476, 237654, 275968, 318739, 366300, 418996, 477184, 541233, 611524, 688450, 772416, 863839, 963148, 1070784, 1187200, 1312861, 1448244
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A002411, A000578, A050509, A006597, A100176, A100177 - structured prisms; A006484 for other meta structured numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-9*n^3+12*n^2): n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    Table[(3n^4-9n^3+12n^2)/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,18,64,175},50] (* Harvey P. Dale, Nov 07 2017 *)
  • PARI
    a(n)=(1/6)*(3*n^4-9*n^3+12*n^2);
    

Formula

a(n) = (1/6)*(3*n^4 - 9*n^3 + 12*n^2).
G.f.: x*(1 - x + 8*x^2 + 4*x^3)/(1-x)^5. - Colin Barker, Jun 08 2012
a(n) = A060354(n) * n = A000124(n-2) * n^2. - Bruce J. Nicholson, Jul 11 2018

A100119 a(n) = n-th centered n-gonal number.

Original entry on oeis.org

1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
Offset: 0

Views

Author

Jonathan Vos Post, Dec 26 2004

Keywords

Comments

a(n) is n times the n-th triangular number plus 1. - Thomas M. Green, Nov 16 2009
From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, ...) convolved with (1, 0, 4, 7, 10, 13, ...).
Example: a(5) = 76 = (6, 5, 4, 3, 2, 1) dot (1, 0, 4, 7, 10, 13) = (6 + 0 + 16 + 21 + 20 + 13). (End)

Examples

			a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - _Thomas M. Green_, Nov 16 2009
		

Crossrefs

See also A101357 (Cumulative sums of the n-th n-gonal numbers).
A diagonal of A101321.

Programs

Formula

a(n) = 1 + n*(n + n^2)/2 = 1 + (1/2)*n^2 + (1/2) * n^3 = 1 + mean(n^2, n^3). - Joshua Zucker, May 03 2006
Equals A002411(n) + 1. - Olivier Gérard, Jun 20 2007
G.f.: (1 - 2*x + 5*x^2 - x^3) / (x-1)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012
a(n) = (A098547(n)+1)/2. - Richard Turk, Jul 18 2017
a(n) = A060354(n+2) - A000290(n+1) = A006003(n+1) - A005563(n) and for n>0 A005920(n) - A068601(n+1). - Bruce J. Nicholson, Jun 23 2018

Extensions

Corrected and extended by Joshua Zucker, May 03 2006

A188947 a(n) = n^3 - 2*n^2 + 2*n + 1.

Original entry on oeis.org

2, 5, 16, 41, 86, 157, 260, 401, 586, 821, 1112, 1465, 1886, 2381, 2956, 3617, 4370, 5221, 6176, 7241, 8422, 9725, 11156, 12721, 14426, 16277, 18280, 20441, 22766, 25261, 27932, 30785, 33826, 37061, 40496, 44137, 47990, 52061, 56356, 60881, 65642, 70645
Offset: 1

Views

Author

Adeniji, Adenike, Apr 14 2011

Keywords

Comments

The original definition was "Identity difference partial one - one transformation semigroup is a semigroup having the property that the difference between max im(alpha) and min im(alpha) is not greater than 1. This is denoted by S = IDI_n for each n." [Needs editing.]
For all n >= 3, a(n) expressed in base n has the three digits n-2, 2, and 1; for example, a(16) in hexadecimal is "E21". For all n >= 3, a(n+1) expressed in base n is "1112". For all n >= 7, a(n+2) expressed in base n is "1465". - Mathew Englander, Jan 07 2021

Crossrefs

Cf. A027444, A053698, A056106 (first differences), A060354, A162607, A188377, A188716.

Programs

Formula

a(n) = (n+1) + n*(n-1)^2 = n^3 - 2*n^2 + 2*n + 1 = 1 + A053698(n-1).
G.f.: ( -x*(-2 + 3*x - 8*x^2 + x^3) ) / ( (x-1)^4 ). - R. J. Mathar, Apr 14 2011
a(n) = A060354(n) + A162607(n+1). - Lechoslaw Ratajczak, Sep 24 2020
E.g.f.: exp(x)*(1 + x)*(1 + x^2) - 1. - Stefano Spezia, Apr 10 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011
Showing 1-10 of 38 results. Next