A055229 Greatest common divisor of largest square dividing n and squarefree part of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a055229 n = product $ zipWith (^) ps (map (flip mod 2) es) where (ps, es) = unzip $ filter ((> 1) . snd) $ zip (a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Oct 27 2015
-
Mathematica
a[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 05 2014 *)
-
PARI
a(n)=my(c=core(n));gcd(c,n/c) \\ Charles R Greathouse IV, Nov 20 2012
Formula
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p for odd e>1. - Vladeta Jovovic, Apr 30 2002
a(n) = core(n)*rad(n/core(n))/rad(n), where core = A007913 and rad = A007947. - Conjecture by Velin Yanev, proof by David J. Seal, Sep 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 + p^2 + p - 1)/(p^2 * (p + 1))) = 1.2249749939341923764... . - Amiram Eldar, Oct 08 2022
Comments