cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A055229 Greatest common divisor of largest square dividing n and squarefree part of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, Jun 21 2000

Keywords

Comments

Record values occur at cubes of squarefree numbers: a(A062838(n)) = A005117(n) and a(m) < A005117(n) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010

Crossrefs

Programs

  • Haskell
    a055229 n = product $ zipWith (^) ps (map (flip mod 2) es) where
       (ps, es) = unzip $
                  filter ((> 1) . snd) $ zip (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Oct 27 2015
  • Mathematica
    a[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    a(n)=my(c=core(n));gcd(c,n/c) \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = gcd[A008833(n), A007913(n)].
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p for odd e>1. - Vladeta Jovovic, Apr 30 2002
A220218(a(n)) = 1; A060476(a(n)) > 1 for n > 1. - Reinhard Zumkeller, Nov 30 2015
a(n) = core(n)*rad(n/core(n))/rad(n), where core = A007913 and rad = A007947. - Conjecture by Velin Yanev, proof by David J. Seal, Sep 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 + p^2 + p - 1)/(p^2 * (p + 1))) = 1.2249749939341923764... . - Amiram Eldar, Oct 08 2022

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A096432 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n; sequence gives n such that 1 + max{e_2, e_3, ...} is a prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A004555.
Sequence is of positive density. - Charles R Greathouse IV, Dec 07 2012
The asymptotic density of this sequence is Sum_{p prime} (1/zeta(p) - 1/zeta(p-1)) = 0.8817562193... - Amiram Eldar, Oct 18 2020

Crossrefs

Programs

  • Maple
    (Maple code for this entry and A074661)
    M:=2000; ans1:=[]; ans2:=[];
    for n from 1 to M do
    t1:=op(2..-1, ifactors(n)); t2:=nops(t1);
    m1:=0; for i from 1 to t2 do m1:=max(m1,t1[i][2]); od:
    if isprime(1+m1) then ans1:=[op(ans1),n]; fi;
    if isprime(m1) then ans2:=[op(ans2),n]; fi;
    od:
  • Mathematica
    Select[Range[2, 100], PrimeQ[1 + Max[FactorInteger[#][[;; , 2]]]] &] (* Amiram Eldar, Oct 18 2020 *)
  • PARI
    isA096432(n) = if(n<2,0,isprime(vecmax(factor(n)[,2])+1))

A295661 Numbers with at least one odd exponent larger than one in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500, 504, 512, 513, 520, 536, 540
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.1184861602... (= 1 - A065465). - Amiram Eldar, May 18 2022

Crossrefs

Positions of nonzero terms in A295662 and A295663.
Subsequence of A046099 (64 = 2^6, although a cube, is not in this sequence).
Differs from A060476 (256 = 2^8 is not a member of this sequence).
Complement of A335275.
Cf. A065465.

Programs

A074661 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n; sequence gives n such that max{e_2, e_3, ...} is prime.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 164, 168, 169, 171, 172, 175, 180, 184
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A056594.
The largest exponent of the prime factors of n is prime. - Harvey P. Dale, Mar 09 2012
The asymptotic density of this sequence is Sum_{p prime} (1/zeta(p+1) - 1/zeta(p)) = 0.3391101054... - Amiram Eldar, Oct 18 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeQ[Max[Transpose[FactorInteger[#]][[2]]]]&] (* Harvey P. Dale, Mar 09 2012 *)
  • PARI
    isA074661(n) = if(n<4,0,isprime(vecmax(factor(n)[,2])))

A368715 Numbers that are not coprime to the maximal exponent in their prime factorization.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 64, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 162, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

Subsequence of A137257 and first differs from it at n = 51.
Numbers k such that gcd(k, A051903(k)) > 1.
Includes all the nonsquarefree terms of A336064.
The asymptotic density of this sequence is 1 - 1/zeta(2) - Sum_{k>=2} (1/(f(k+1, k) * zeta(k+1)) - 1/(f(k, k) * zeta(k))) = 0.24998449199080279703..., where f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).

Crossrefs

Cf. A051903.
Subsequence of A013929 and A137257.
Similar sequences: A060476, A074661, A096432, A336064, A368714.

Programs

  • Mathematica
    Select[Range[210], !CoprimeQ[#, Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 2, kmax, if(gcd(k, vecmax(factor(k)[,2])) > 1, print1(k, ", ")));

A376142 Nonsquarefree numbers whose prime factorization has a maximum exponent that is odd.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Sep 11 2024

Keywords

Comments

Subsequence of A060476 and differs from it by not having the terms 1, 256, 768, 1280, 1792, 2304, ... .
Subsequence of A295661 and first differs from it at n = 51: A295661(51) = 432 is not a term of this sequence.
First differs from A325990 at n = 30: A325990(30) = 256 is not a term of this sequence.
Nonsquarefree numbers k such that A051903(k) is odd, or equivalently, numbers k such that A051903(k) is an odd number that is larger than 1.
The asymptotic density of this sequence is Sum_{k>=3} (-1)^(k+1) * (1 - 1/zeta(k)) = 0.11615617754774636364... .

Crossrefs

Complement of A368714 within A013929.

Programs

  • Mathematica
    q[n_] := n > 1 && OddQ[n]; Select[Range[500], q[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    is(k) = k > 1 && apply(x -> (x > 1 && x % 2), vecmax(factor(k)[, 2]));

A325990 Numbers with more than one perfect factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 256, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

First differs from A060476 in lacking 1 and having 432.
A perfect factorization of n is an orderless factorization of n into factors > 1 such that every divisor of n is the product of exactly one submultiset of the factors. This is the intersection of covering (or complete) factorizations (A325988) and knapsack factorizations (A292886).

Crossrefs

Positions of terms > 1 in A325989.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Function[n,Length[Select[facs[n],Sort[Times@@@Union[Subsets[#]]]==Divisors[n]&]]>1]]

A377844 Numbers that have a single odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .

Crossrefs

Subsequence of A295661.
Subsequences: A065036, A143610, A163569.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;
Showing 1-9 of 9 results.