A060488 Number of 4-block ordered tricoverings of an unlabeled n-set.
4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 11.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n-2)*(n-1)*(n+9)/6: n in [3..60]]; // Vincenzo Librandi, Jun 15 2011
-
Mathematica
Table[ 3 (n - 1) (n - 2)/2! + n (n - 1) (n - 2)/3!, {n, 3, 62}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *) Table[(n-2)(n-1)(n+9)/6,{n,3,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {4,13,28,50},50] (* Harvey P. Dale, Jul 21 2012 *)
-
PARI
a(n)=(n-2)*(n-1)*(n+9)/6 \\ Charles R Greathouse IV, Jun 14 2011
Formula
a(n) = binomial(n+3, 3) - 6*binomial(n+1, 1) + 8*binomial(n, 0) - 3*binomial(n-1, -1).
G.f.: -y^3*(-4+3*y)/(-1+y)^4.
E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y)) * sum(k>=0, 1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k! ).
a(n) = (n+9)*binomial(n-1, 2)/3.
a(n) = (n-2)*(n-1)*(n+9)/6. - Zak Seidov, Jun 15 2006
a(3)=4, a(4)=13, a(5)=28, a(6)=50, a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 21 2012
Comments