A060681 Largest difference between consecutive divisors of n (ordered by size).
0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 6, 12, 7, 10, 8, 16, 9, 18, 10, 14, 11, 22, 12, 20, 13, 18, 14, 28, 15, 30, 16, 22, 17, 28, 18, 36, 19, 26, 20, 40, 21, 42, 22, 30, 23, 46, 24, 42, 25, 34, 26, 52, 27, 44, 28, 38, 29, 58, 30, 60, 31, 42, 32, 52, 33, 66, 34, 46, 35, 70, 36, 72, 37
Offset: 1
Examples
For n = 35, divisors are {1, 5, 7, 35}; differences are {4, 2, 28}; a(35) = largest difference = 28 = 35 - 35/5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Antal Balog, Paul Erdős, and Gérald Tenenbaum,, On Arithmetic Functions Involving Consecutive Divisors, In: Analytical Number Theory, pp. 77-90, Birkhäuser, Basel, 1990.
Crossrefs
Programs
-
Haskell
a060681 n = div n p * (p - 1) where p = a020639 n -- Reinhard Zumkeller, Apr 06 2015
-
Maple
read("transforms") : A060681 := proc(n) if n = 1 then 0 ; else sort(convert(numtheory[divisors](n),list)) ; DIFF(%) ; max(op(%)) ; end if; end proc: seq(A060681(n),n=1..60) ; # R. J. Mathar, May 23 2018 # second Maple program: A060681:=n->if(n=1,0,min(map(x->ilcm(x,n-x),[$1..1/2*n]))); seq(A060681(n),n=1..74); # Felix Huber, Aug 28 2024
-
Mathematica
a[n_ ] := n - n/FactorInteger[n][[1, 1]] Array[Max[Differences[Divisors[#]]] &, 80, 2] (* Harvey P. Dale, Oct 26 2013 *)
-
PARI
diff(v)=vector(#v-1,i,v[i+1]-v[i]) a(n)=vecmax(diff(divisors(n))) \\ Charles R Greathouse IV, Sep 02 2015
-
PARI
a(n) = if (n==1, 0, n - n/factor(n)[1,1]); \\ Michel Marcus, Oct 24 2015
-
PARI
first(n) = n = max(n, 1); my(res = vector(n)); res[1] = 0; forprime(p = 2, n, for(i = 1, n \ p, if(res[p * i] == 0, res[p * i] = i*(p-1)))); res \\ David A. Corneth, Jan 08 2019
-
Python
from sympy import primefactors def A060681(n): return n-n//min(primefactors(n),default=1) # Chai Wah Wu, Jun 21 2023
Formula
a(n) = n - n/A020639(n).
a(n) = n - A032742(n). - Omar E. Pol, Aug 31 2011
a(2n) = n, a(3*(2n+1)) = 2*(2n+1) = 4n + 2. - Antti Karttunen, Oct 23 2023
Sum_{k=1..n} a(k) ~ (1/2 - c) * n^2, where c is defined in the corresponding formula in A032742. - Amiram Eldar, Dec 21 2024
Extensions
Edited by Dean Hickerson, Jan 22 2002
a(1)=0 added by N. J. A. Sloane, Oct 01 2015 at the suggestion of Antti Karttunen
Comments