A060747 a(n) = 2*n - 1.
-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a060747 = subtract 1 . (* 2) a060747_list = [-1, 1 ..] -- Reinhard Zumkeller, Jul 05 2015 -- Reinhard Zumkeller, Jul 05 2015
-
Mathematica
Table[2*n - 1, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *) LinearRecurrence[{2,-1},{-1,1},80] (* Harvey P. Dale, Mar 27 2020 *)
-
PARI
a(n)=2*n-1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (3*x - 1)/(1 - x)^2.
Abs(a(n)) = Sum_{k=0..n} (A078008(k) mod 4). - Paul Barry, Mar 12 2004
E.g.f.: exp(x)*(2*x-1). - Paul Barry, Mar 31 2007
a(n) = 2*a(n-1) - a(n-2); a(0)=-1, a(1)=1. - Philippe Deléham, Nov 03 2008
a(n) = 4*n - a(n-1) - 4 for n>0, with a(0)=-1. - Vincenzo Librandi, Aug 07 2010
Comments