cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060868 Number of n X n matrices over GF(3) with rank 1.

Original entry on oeis.org

2, 32, 338, 3200, 29282, 264992, 2389298, 21516800, 193690562, 1743333152, 15690352658, 141214236800, 1270931319842, 11438391444512, 102945551698418, 926510051379200, 8338590720693122, 75047317261079072, 675425857674234578, 6078832726041680000, 54709494555295826402
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 04 2001

Keywords

Examples

			a(2) = 32 because there are 33 (the second element in sequence A060705) singular 2 X 2 matrices over GF(3), that have rank <= 1 of which only the zero matrix has rank zero so a(2) = 33 - 1 = 32.
		

Crossrefs

Column k=3 of A379587.

Programs

Formula

a(n) = 1/2 * (3^n - 1)^2.
G.f.: -2*x*(3*x+1) / ((x-1)*(3*x-1)*(9*x-1)). - Colin Barker, Dec 23 2012
E.g.f.: exp(x)*(1 - 2*exp(2*x) + exp(8*x))/2. - Stefano Spezia, Dec 26 2024

Extensions

More terms from Jason Earls, May 05 2001

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.

A085404 Number of n X n matrices over GF(4) with rank n-1.

Original entry on oeis.org

1, 75, 79380, 1310904000, 344319762124800, 1444887697908695040000, 96976611786040182520676352000, 104131021972308383324202529613414400000, 1788970984376098024967914354100894418012733440000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 31 2003

Keywords

Crossrefs

Formula

For n>=2: a(n) = product j=0...n-2 (4^n - 4^j)^2 / (4^(n-1)- 4^j).

Extensions

More terms from David Wasserman, Jan 31 2005

A345963 a(n) = (q^2-q+1)/3 where q = 2^(2*n+1) = A004171(n).

Original entry on oeis.org

1, 19, 331, 5419, 87211, 1397419, 22366891, 357903019, 5726579371, 91625794219, 1466014804651, 23456245263019, 375299957762731, 6004799458421419, 96076791871613611, 1537228672093301419, 24595658762082757291, 393530540227683855019, 6296488643780380633771, 100743818301035845954219
Offset: 0

Views

Author

Michel Marcus, Jun 30 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (q-> (q^2-q+1)/3)(2^(2*n+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 30 2021
  • Mathematica
    Table[(2^(4*n + 2) - 2^(2*n + 1) + 1)/3, {n, 0, 19}] (* Amiram Eldar, Jun 30 2021 *)
  • PARI
    a(n) = my(q=2^(2*n+1)); (q^2-q+1)/3;

Formula

a(n) = A002061(A004171(n))/3.
a(n) = (A060869(n) + 1)/4. - Hugo Pfoertner, Jun 30 2021
Showing 1-4 of 4 results.