cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A269442 a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

Programs

  • GAP
    List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Table[Cyclotomic[17, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...

A175170 Primes of the form k^6 - k^3 + 1.

Original entry on oeis.org

46441, 117307, 530713, 5488957657, 13841169553, 24794753833, 82653662521, 151333837273, 282429005041, 464403405313, 782756904961, 999999000001, 1418517921241, 2699552509993, 2985982272001, 3138426605161, 4001502141001, 28722895031251, 47045874141001, 56693904845761, 78672332016307
Offset: 1

Views

Author

Vincenzo Librandi, Dec 03 2010

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is n^3*(n^3-1)+1 ];
  • Mathematica
    Select[Table[n^6-n^3+1,{n,0,2000}],PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)

Formula

A000040 INTERSECT A060891.

A175205 Primes p such that p^6-p^3+1 is also prime.

Original entry on oeis.org

7, 73, 271, 367, 379, 397, 739, 823, 859, 1291, 1297, 1627, 1747, 2083, 2203, 2221, 2269, 2311, 3067, 3079, 3109, 3163, 3463, 3607, 3733, 3907, 4093, 4339, 4603, 4933, 5077, 5431, 5527, 5821, 5869, 6091, 6301, 6373, 6421, 6529, 6883, 7927, 7951, 8011, 8467, 8689, 8737
Offset: 1

Views

Author

Vincenzo Librandi, Dec 03 2010

Keywords

Crossrefs

Subsequence of A002476.

Programs

  • Magma
    [p: p in PrimesUpTo(9000) | IsPrime(p^6-p^3+1)]; // Vincenzo Librandi, Apr 16 2013
  • Mathematica
    Select[Prime[Range[2000]], PrimeQ[#^6 -  #^3 + 1]&] (* Vincenzo Librandi, Apr 16 2013 *)
  • PARI
    forprime(p=2,10000,if(isprime(p^6-p^3+1),print1(p,", ")))
    

Formula

A000040 INTERSECT A164989.

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Views

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019
Showing 1-4 of 4 results.