A121707 Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1371 terms from Robert Israel)
- T. Ordowski, Density of anti-Carmichael numbers, SeqFan Mailing List, Feb 17 2021.
- Don Reble, Comments on A121707
Crossrefs
Programs
-
Maple
filter:= n -> add(k &^ n mod n^3, k=1..n-1) mod n^3 = 0: select(filter, [$2..1000]); # Robert Israel, Oct 08 2015
-
Mathematica
fQ[n_] := Mod[Sum[PowerMod[k, n, n^3], {k, n - 1}], n^3] == 0; Select[ Range[2, 611], fQ] (* Robert G. Wilson v, Apr 04 2011 and slightly modified Aug 02 2018 *)
-
PARI
is(n)=my(n3=n^3);sum(k=1,n-1,Mod(k,n3)^n)==0 \\ Charles R Greathouse IV, May 09 2013
-
PARI
for(n=2, 1000, if(sum(k=1, n-1, k^n) % n^3 == 0, print1(n", "))) \\ Altug Alkan, Oct 15 2015
-
Sage
# after Andrzej Schinzel def isA121707(n): if n == 1 or is_even(n): return False return n.divides(sum(k^(n-1) for k in (1..n-1))) [n for n in (1..611) if isA121707(n)] # Peter Luschny, Jul 18 2019
Extensions
Sequence corrected by Robert G. Wilson v, Apr 04 2011
A281648 (Numerator of Bernoulli(2*n)) read mod n.
0, 1, 1, 3, 0, 5, 0, 7, 1, 9, 0, 5, 0, 7, 5, 15, 0, 11, 0, 9, 1, 11, 0, 13, 0, 13, 19, 7, 0, 19, 0, 31, 11, 17, 0, 11, 0, 19, 13, 13, 0, 37, 0, 33, 35, 23, 0, 37, 0, 39, 34, 39, 0, 11, 5, 35, 19, 29, 0, 29, 0, 31, 61, 63, 0, 55, 0, 51, 23, 21, 0, 43, 0, 37, 50, 19
Offset: 1
Keywords
Comments
Conjecture: a(n) == n-1 (mod n) if only if n = 6, 10 or n = 2^k for k >= 0. This is true for n <= 1024. - Seiichi Manyama, Jan 27 2017
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Mod[Numerator[BernoulliB[2 n]], n]; Array[f, 77] (* Robert G. Wilson v, Jan 26 2017 *)
-
PARI
a(n)=numerator(bernfrac(2*n))%n \\ Charles R Greathouse IV, Jan 27 2017
-
Ruby
def bernoulli(n) ary = [] a = [] (0..n).each{|i| a << 1r / (i + 1) i.downto(1){|j| a[j - 1] = j * (a[j - 1] - a[j])} ary << a[0] } ary end def A281648(n) a = bernoulli(2 * n) (1..n).map{|i| a[2 * i].numerator % i} end
Formula
a(n) = A000367(n) mod n.
Comments