cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061037 Numerator of 1/4 - 1/n^2.

Original entry on oeis.org

0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675
Offset: 2

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011
Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Cf. A061038 (denominators), A061035-A061050, A126252, A028347.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011
  • Magma
    [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011
    
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]
    f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)
    a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)
    Numerator[1/4-1/Range[2,60]^2] (* Harvey P. Dale, Aug 18 2011 *)
  • PARI
    a(n) = { numerator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
    

Formula

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.
a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005
a(n+2) = A060819(n) * A060819(n+4).
a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011
a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]
a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=3} 1/a(n) = 11/6. - Amiram Eldar, Aug 12 2022