A142590 First trisection of A061037 (Balmer line series of the hydrogen atom).
0, 21, 15, 117, 12, 285, 99, 525, 42, 837, 255, 1221, 90, 1677, 483, 2205, 156, 2805, 783, 3477, 240, 4221, 1155, 5037, 342, 5925, 1599, 6885, 462, 7917, 2115, 9021, 600, 10197, 2703, 11445, 756, 12765, 3363, 14157, 930, 15621, 4095, 17157, 1122, 18765, 4899, 20445
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))); // G. C. Greubel, Sep 19 2018 -
Mathematica
Table[Numerator[1/4 - 1/#^2] &[2 + 3 n], {n, 0, 47}] (* Michael De Vlieger, Apr 02 2017 *) CoefficientList[Series[3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))) \\ G. C. Greubel, Sep 19 2018
Formula
a(n) = A061037(2+3n).
a(n) mod 9 = 3*A010872(n).
G.f.: 3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3). - R. J. Mathar, Sep 22 2008
a(n) = 3*n*(3*n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. - Luce ETIENNE, Mar 31 2017
Sum_{n>=1} 1/a(n) = 5/4 - 5*Pi/(48*sqrt(3)) - 11*log(3)/16. - Amiram Eldar, Sep 11 2022
Extensions
Edited and extended by R. J. Mathar, Sep 22 2008
Comments