A061057 Factorial splitting: write n! = x*y with x <= y and x maximal; sequence gives value of y-x.
0, 1, 1, 2, 2, 6, 2, 18, 54, 30, 36, 576, 127, 840, 928, 3712, 20160, 93696, 420480, 800640, 1305696, 7983360, 55056804, 65318400, 326592000, 2286926400, 2610934480, 13680979200, 18906930876, 674165366496, 326850970500, 16753029012720, 16880461678080
Offset: 1
Keywords
Examples
2! = 1*2, with difference of 1. 3! = 2*3, with difference of 1. 4! = 4*6, with difference of 2. 5! = 10*12, with difference of 2. 6! = 24*30, with difference of 6. 7! = 70*72 with difference of 2. The corresponding central divisors are two units apart (equivalently, n!+1=A038507(n) is a square) for n = 4, 5, 7 (see A146968).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..140
Crossrefs
Programs
-
Maple
A060777 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(1+nd/2),d) ; end: A060776 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(nd/2),d) ; end: A061057 := proc(n) A060777(n)-A060776(n) ; end: seq(A061057(n),n=2..27) ; # R. J. Mathar, Mar 14 2009
-
Mathematica
Do[ With[ {k = Floor[ Sqrt[ x! ] ] - Do[ If[ Mod[ x!, Floor[ Sqrt[ x! ] ] - n ] == 0, Return[ n ] ], {n, 0, 10000000} ]}, Print[ {x, "! =", k, x!/k, x!/k - k} ] ], {x, 3, 22} ] f[n_] := Block[{k = Floor@ Sqrt[n! ]}, While[ Mod[n!, k] != 0, k-- ]; n!/k - k]; Table[f@n, {n, 2, 32}] (* Robert G. Wilson v, Jul 11 2009 *) Table[d=Divisors[n!]; len=Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 34}] (* Vincenzo Librandi, Jan 02 2016 *)
-
PARI
for(k=2,25,d=divisors(k!);print(d[#d/2+1]-d[#d/2])) \\ Jaume Oliver Lafont, Mar 13 2009
-
Python
from math import isqrt, factorial from sympy import divisors def A061057(n): k = factorial(n) m = max(d for d in divisors(k,generator=True) if d <= isqrt(k)) return k//m-m # Chai Wah Wu, Apr 06 2022
Formula
Extensions
More terms from Dean Hickerson, Jun 13 2001
a(41) from Robert G. Wilson v, Oct 03 2014
Comments