cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061066 a(n) = (prime(n)^2 - 1)/8.

Original entry on oeis.org

1, 3, 6, 15, 21, 36, 45, 66, 105, 120, 171, 210, 231, 276, 351, 435, 465, 561, 630, 666, 780, 861, 990, 1176, 1275, 1326, 1431, 1485, 1596, 2016, 2145, 2346, 2415, 2775, 2850, 3081, 3321, 3486, 3741, 4005, 4095, 4560, 4656, 4851, 4950, 5565, 6216, 6441
Offset: 2

Views

Author

Labos Elemer, May 28 2001

Keywords

Comments

This sequence is a subsequence of the triangular numbers (A000217) because (prime(n)^2-1)/8 = ((2m+1)^2-1)/8 = m(m+1)/2 where p=2m+1 for a given m. - David Morales Marciel, Oct 07 2015
The Jacobi symbol (2|p) = (-1)^((p^2-1)/8). - Michael Somos, Feb 17 2020
Number of inversions of the permutation ((2*i) mod p){1<=i<=p-1} = (2,4,...,p-1,1,3,...,p-2) of {1,2,...,p-1}, where p = prime(n). - _Jianing Song, Apr 07 2023

Examples

			a(2) = 1 because p = prime(2) = 3 and (3^2-1)/8 = 1. - _Michael Somos_, Feb 17 2020
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 307.

Crossrefs

Programs

Formula

a(n) = A000217(A005097(n-1)). - after first comment, Michel Marcus, Oct 07 2015
a(n) = (3/8)*A024700(n-2). - G. C. Greubel, May 03 2024