A061066 a(n) = (prime(n)^2 - 1)/8.
1, 3, 6, 15, 21, 36, 45, 66, 105, 120, 171, 210, 231, 276, 351, 435, 465, 561, 630, 666, 780, 861, 990, 1176, 1275, 1326, 1431, 1485, 1596, 2016, 2145, 2346, 2415, 2775, 2850, 3081, 3321, 3486, 3741, 4005, 4095, 4560, 4656, 4851, 4950, 5565, 6216, 6441
Offset: 2
Keywords
Examples
a(2) = 1 because p = prime(2) = 3 and (3^2-1)/8 = 1. - _Michael Somos_, Feb 17 2020
References
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 307.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Programs
-
Magma
[(p^2-1)/8: p in PrimesInInterval(3,300)]; // G. C. Greubel, May 03 2024
-
Mathematica
f[n_]:=(Prime[n]^2-1)/8; Array[f,66,2] (* Vladimir Joseph Stephan Orlovsky, Aug 06 2009 *) (#^2-1)/8&/@Prime[Range[2,50]] (* Harvey P. Dale, Nov 16 2012 *)
-
PARI
vector(100, n, (prime(n+1)^2 - 1)/8) \\ Altug Alkan, Oct 07 2015
-
SageMath
[(n^2-1)/8 for n in prime_range(3,301)] # G. C. Greubel, May 03 2024
Formula
a(n) = (3/8)*A024700(n-2). - G. C. Greubel, May 03 2024
Comments