cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061084 Fibonacci-type sequence based on subtraction: a(0) = 1, a(1) = 2 and a(n) = a(n-2) - a(n-1).

Original entry on oeis.org

1, 2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123, -199, 322, -521, 843, -1364, 2207, -3571, 5778, -9349, 15127, -24476, 39603, -64079, 103682, -167761, 271443, -439204, 710647, -1149851, 1860498, -3010349, 4870847, -7881196, 12752043, -20633239, 33385282, -54018521
Offset: 0

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

If we drop 1 and start with 2 this is the Lucas sequence V(-1,-1). G.f.: (2+x)/(1+x-x^2). In this case a(n) is also the trace of A^(-n), where A is the Fibomatrix ((1,1), (1,0)). - Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002
The positive sequence with g.f. (1+x-2*x^2)/(1-x-x^2) gives the diagonal sums of the Riordan array (1+2*x, x/(1-x)). - Paul Barry, Jul 18 2005
Pisano period lengths: 1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, .... (is this A106291?). - R. J. Mathar, Aug 10 2012

Examples

			a(6) = a(4)-a(5) = -4 - 7 = -11.
		

Crossrefs

Cf. A061083 for division, A000301 for multiplication and A000045 for addition - the common Fibonacci numbers.

Programs

Formula

a(n) = (-1)^(n-1) * A000204(n-1).
O.g.f.: (1+3*x)/(1+x-x^2). - Len Smiley, Dec 02 2001
a(n) = A039834(n+1) + 3*A039834(n). - R. J. Mathar, Oct 30 2015
From G. C. Greubel, Jun 14 2025: (Start)
a(n) = A000032(1-n).
E.g.f.: exp(-x/2)*( cosh(p*x) + sqrt(5)*sinh(p*x) ), where p = sqrt(5)/2. (End)

Extensions

Corrected by T. D. Noe, Oct 25 2006