cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A075150 a(n) = L(n)*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (see comment to A061084).

Original entry on oeis.org

4, -1, 9, -16, 49, -121, 324, -841, 2209, -5776, 15129, -39601, 103684, -271441, 710649, -1860496, 4870849, -12752041, 33385284, -87403801, 228826129, -599074576, 1568397609, -4106118241, 10749957124, -28143753121, 73681302249, -192900153616, 505019158609, -1322157322201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002

Keywords

Crossrefs

Programs

  • Magma
    A075150:= func< n | (-1)^n*Lucas(n)^2 >; // G. C. Greubel, Jun 14 2025
    
  • Mathematica
    CoefficientList[Series[(4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 30}], x]
    LinearRecurrence[{-2,2,1},{4,-1,9},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2+(1/2*(-3-sqrt(5)))^n+(1/2*(-3+sqrt(5)))^n)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((4+7*x-x^2)/(1+2*x-2*x^2-x^3) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    def A075150(n): return (-1)**n*lucas_number2(n,1,-1)**2 # G. C. Greubel, Jun 14 2025

Formula

a(n) = (-1)^n*A000032(2*n) + 2.
a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) with a(0)=4, a(1)=-1, a(2)=9.
G.f.: (4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3).
a(n) = (-1)^n*A001254(n). - R. J. Mathar, Jan 11 2012
a(n) = 2 + (1/2*(-3-sqrt(5)))^n + (1/2*(-3+sqrt(5)))^n. - Colin Barker, Oct 01 2016
From G. C. Greubel, Jun 14 2025: (Start)
a(n) = A000032(n)*A000032(-n) = (-1)^n*A000032(n)^2.
a(n) = A219233(n) + 2 + [n=0].
E.g.f.: 2*exp(-3*x/2)*cosh(sqrt(5)*x/2) + 2*exp(x). (End)

A075091 Sum of Lucas numbers and reflected Lucas numbers (comment to A061084).

Original entry on oeis.org

4, 0, 6, 0, 14, 0, 36, 0, 94, 0, 246, 0, 644, 0, 1686, 0, 4414, 0, 11556, 0, 30254, 0, 79206, 0, 207364, 0, 542886, 0, 1421294, 0, 3720996, 0, 9741694, 0, 25504086, 0, 66770564, 0, 174807606, 0, 457652254, 0, 1198149156, 0, 3136795214, 0, 8212236486, 0, 21499914244, 0
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 31 2002

Keywords

Comments

a(n) = ((-1)^n + 1)*L(n), where L(n) denotes the n-th Lucas number.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4 - 6*x^2)/(1 - 3*x^2 + x^4), {x, 0, 50}], x]
    LinearRecurrence[{0,3,0,-1},{4,0,6,0},50] (* or *) Riffle[ LinearRecurrence[ {3,-1},{4,6},30],0] (* Harvey P. Dale, Aug 17 2018 *)

Formula

a(n) = 3*a(n-2) - a(n-4), a(0)=4, a(1)=0, a(2)=6, a(3)=0.
G.f.: (4 - 6x^2)/(1 - 3*x^2 + x^4).
E.g.f.: 4*cosh(x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Aug 30 2025

Extensions

a(46)-a(49) from Stefano Spezia, Aug 30 2025

A075151 a(n)=L(n)^2*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (comment to A061084).

Original entry on oeis.org

8, -1, 27, -64, 343, -1331, 5832, -24389, 103823, -438976, 1860867, -7880599, 33386248, -141420761, 599077107, -2537716544, 10749963743, -45537538411, 192900170952, -817138135549, 3461452853383, -14662949322176, 62113250509227, -263115950765039, 1114577054530568
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [((-1)^n*Lucas(n))^3: n in [0..30]]; // Vincenzo Librandi, Apr 22 2018
  • Mathematica
    CoefficientList[Series[(8+23*x-24*x^2-x^3)/(1+3*x-6*x^2-3*x^3+x^4), {x, 0, 25}], x]
    LinearRecurrence[{-3,6,3,-1},{8,-1,27,-64},30] (* Harvey P. Dale, Apr 06 2013 *)
    Table[LucasL[-n]^3, {n, 0, 25}] (* Vincenzo Librandi, Apr 22 2018 *)

Formula

a(n) = 3*L(n)+(-1)^n*L(3n).
a(n) = -3a(n-1)+6a(n-2)+3a(n-3)-a(n-4), n>3.
G.f.: ( 8+23*x-24*x^2-x^3 ) / ( (x^2+x-1)*(x^2-4*x-1) ).
a(n) is asymptotic to (-phi)^(3n) where phi is the golden ratio (1+sqrt(5))/2. - Benoit Cloitre, Sep 07 2002
a(n) = ((-1)^n*L(n))^3 = L(-n)^3. - Ehren Metcalfe, Apr 21 2018

A124844 Triangle T(n,k)=binomial(n,k)*A061084(k), 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 4, -1, 1, 6, -3, 3, 1, 8, -6, 12, -4, 1, 10, -10, 30, -20, 7, 1, 12, -15, 60, -60, 42, -11, 1, 14, -21, 105, -140, 147, -77, 18, 1, 16, -28, 168, -280, 392, -308, 144, -29, 1, 18, -36, 252, -504, 882, -924, 648, -261, 47, 1, 20, -45, 360, -840, 1764, -2310, 2160, -1305, 470, -76
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2006

Keywords

Examples

			First few rows of the triangle are:
1;
1, 2;
1, 4, -1;
1, 6, -3, 3;
1, 8, -6, 12, -4;
1, 10, -10, 30, -20, 7;
1, 12, -15, 60, -60, 42, -11;
1, 14, -21, 105, -140, 147, -77, 18;
...
		

Crossrefs

Cf. A061084, A000032, A000204 (row sums).
Cf. A007318.

Programs

  • Haskell
    import Data.List (inits)
    a124844 n k = a124844_tabl !! n !! k
    a124844_row n = a124844_tabl !! n
    a124844_tabl = zipWith (zipWith (*))
                           a007318_tabl $ tail $ inits a061084_list
    -- Reinhard Zumkeller, Sep 15 2015

Formula

We let A061084 = the diagonal of an infinite matrix, M. Perform P*M and extract the zeros, where P = Pascal's triangle as an infinite lower triangular matrix.

A000204 Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.

Original entry on oeis.org

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324
Offset: 1

Views

Author

Keywords

Comments

See A000032 for the version beginning 2, 1, 3, 4, 7, ...
Also called Schoute's accessory series (see Jean, 1984). - N. J. A. Sloane, Jun 08 2011
L(n) is the number of matchings in a cycle on n vertices: L(4)=7 because the matchings in a square with edges a, b, c, d (labeled consecutively) are the empty set, a, b, c, d, ac and bd. - Emeric Deutsch, Jun 18 2001
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1..m - 1, a(m) = m + 1. The generating function is (x + m*x^m)/(1 - x - x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n - 1 - (m - 1)*i, i - 1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m = 2: A000204, m = 3: A001609, m = 4: A014097, m = 5: A058368, m = 6: A058367, m = 7: A058366, m = 8: A058365, m = 9: A058364.
L(n) is the number of points of period n in the golden mean shift. The number of orbits of length n in the golden mean shift is given by the n-th term of the sequence A006206. - Thomas Ward, Mar 13 2001
Row sums of A029635 are 1, 1, 3, 4, 7, ... - Paul Barry, Jan 30 2005
a(n) counts circular n-bit strings with no repeated 1's. E.g., for a(5): 00000 00001 00010 00100 00101 01000 01001 01010 10000 10010 10100. Note #{0...} = fib(n+1), #{1...} = fib(n-1), #{000..., 001..., 100...} = a(n-1), #{010..., 101...} = a(n-2). - Len Smiley, Oct 14 2001
Row sums of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
If p is prime then L(p) == 1 (mod p). L(2^k) == -1 (mod 2^(k+1)) for k = 0,1,2,... - Thomas Ordowski, Sep 25 2013
Satisfies Benford's law [Brown-Duncan, 1970; Berger-Hill, 2017]. - N. J. A. Sloane, Feb 08 2017

Examples

			G.f. = x + 3*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 18*x^6 + 29*x^7 + 47*x^8 + ...
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 69.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 46.
  • Leonhard Euler, Introductio in analysin infinitorum (1748), sections 216 and 229.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 148.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
  • R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5. - N. J. A. Sloane, Jun 08 2011
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Programs

  • Haskell
    a000204 n = a000204_list !! n
    a000204_list = 1 : 3 : zipWith (+) a000204_list (tail a000204_list)
    -- Reinhard Zumkeller, Dec 18 2011
    
  • Magma
    [Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    A000204 := proc(n) option remember; if n <=2 then 2*n-1; else procname(n-1)+procname(n-2); fi; end;
    with(combinat): A000204 := n->fibonacci(n+1)+fibonacci(n-1);
    # alternative Maple program:
    L:= n-> (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]:
    seq(L(n), n=1..50);  # Alois P. Heinz, Jul 25 2008
    # Alternative:
    a := n -> `if`(n=1, 1, `if`(n=2, 3, hypergeom([(1-n)/2, -n/2], [1-n], -4))):
    seq(simplify(a(n)), n=1..39); # Peter Luschny, Sep 03 2019
  • Mathematica
    c = (1 + Sqrt[5])/2; Table[Expand[c^n + (1 - c)^n], {n, 30}] (* Artur Jasinski, Oct 05 2008 *)
    Table[LucasL[n, 1], {n, 36}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{1, 1},{1, 3}, 50] (* Sture Sjöstedt, Nov 28 2011 *)
    lukeNum[n_] := If[n < 1, 0, LucasL[n]]; (* Michael Somos, May 18 2015 *)
    lukeNum[n_] := SeriesCoefficient[x D[Log[1 / (1 - x - x^2)], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    A000204(n)=fibonacci(n+1)+fibonacci(n-1) \\ Michael B. Porter, Nov 05 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return [1, 3][n-1] if n < 3 else a(n-1) + a(n-2)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Nov 13 2022
    
  • Python
    [(i:=-1)+(j:=2)] + [(j:=i+j)+(i:=j-i) for  in range(100)] # _Jwalin Bhatt, Apr 02 2025
  • Sage
    def A000204():
        x, y = 1, 2
        while true:
           yield x
           x, y = x + y, x
    a = A000204(); print([next(a) for i in range(39)])  # Peter Luschny, Dec 17 2015
    
  • Scala
    def lucas(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 2, 1)
    }
    (1 to 50).map(lucas()) // _Alonso del Arte, Oct 20 2019
    

Formula

Expansion of x(1 + 2x)/(1 - x - x^2). - Simon Plouffe, dissertation 1992; multiplied by x. - R. J. Mathar, Nov 14 2007
a(n) = A000045(2n)/A000045(n). - Benoit Cloitre, Jan 05 2003
For n > 1, L(n) = F(n + 2) - F(n - 2), where F(n) is the n-th Fibonacci number (A000045). - Gerald McGarvey, Jul 10 2004
a(n+1) = 4*A054886(n+3) - A022388(n) - 2*A022120(n+1) (a conjecture; note that the above sequences have different offsets). - Creighton Dement, Nov 27 2004
a(n) = Sum_{k=0..floor((n+1)/2)} (n+1)*binomial(n - k + 1, k)/(n - k + 1). - Paul Barry, Jan 30 2005
L(n) = A000045(n+3) - 2*A000045(n). - Creighton Dement, Oct 07 2005
L(n) = A000045(n+1) + A000045(n-1). - John Blythe Dobson, Sep 29 2007
a(n) = 2*Fibonacci(n-1) + Fibonacci(n), n >= 1. - Zerinvary Lajos, Oct 05 2007
L(n) is the term (1, 1) in the 1 X 2 matrix [2, -1].[1, 1; 1, 0]^n. - Alois P. Heinz, Jul 25 2008
a(n) = phi^n + (1 - phi)^n = phi^n + (-phi)^(-n) = ((1 + sqrt(5))^n + (1 - sqrt(5))^n)/(2^n) where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = A014217(n+1) - A014217(n-1). See A153263. - Paul Curtz, Dec 22 2008
a(n) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + ((1 + sqrt(5))^(n - 1) - (1 - sqrt(5))^(n - 1))/(2^(n - 2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009, Jan 14 2009
From Hieronymus Fischer, Oct 20 2010 (Start)
Continued fraction for n odd: [L(n); L(n), L(n), ...] = L(n) + fract(Fib(n) * phi).
Continued fraction for n even: [L(n); -L(n), L(n), -L(n), L(n), ...] = L(n) - 1 + fract(Fib(n)*phi). Also: [L(n) - 2; 1, L(n) - 2, 1, L(n) - 2, ...] = L(n) - 2 + fract(Fib(n)*phi). (End)
INVERT transform of (1, 2, -1, -2, 1, 2, ...). - Gary W. Adamson, Mar 07 2012
L(2n - 1) = floor(phi^(2n - 1)); L(2n) = ceiling(phi^(2n)). - Thomas Ordowski, Jun 15 2012
a(n) = hypergeom([(1 - n)/2, -n/2], [1 - n], -4) for n >= 3. - Peter Luschny, Sep 03 2019
E.g.f.: 2*(exp(x/2)*cosh(sqrt(5)*x/2) - 1). - Stefano Spezia, Jul 26 2022

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Plouffe Maple line edited by N. J. A. Sloane, May 13 2008

A203976 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=4.

Original entry on oeis.org

0, 1, 5, 4, 15, 11, 40, 29, 105, 76, 275, 199, 720, 521, 1885, 1364, 4935, 3571, 12920, 9349, 33825, 24476, 88555, 64079, 231840, 167761, 606965, 439204, 1589055, 1149851, 4160200, 3010349, 10891545, 7881196, 28514435, 20633239, 74651760, 54018521, 195440845
Offset: 0

Views

Author

Michael Somos, Jan 08 2012

Keywords

Comments

a(n+1) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = Lucas(k) for k = 1, ..., n+1.
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
a(n) = row sums of triangle A226377(n), based on differences among Lucas Numbers. - Richard R. Forberg, Aug 01 2013
A strong divisibility sequence, i.e., gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = 1/2*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29,...]. The present sequence is the sequence of numerators; the sequence of denominators [1, 1, 4, 3, 11, 8, 29,...] is A005013. - Peter Bala, May 19 2014
It appears that the first homology group of the branched n-th cyclic covering of the group of figure-eight knot is the direct sum of cyclic groups of orders a(n) and A005013(n), so the order of that group is the product of these numbers, i. e. A004146(n); see the table on p. 156 of the paper by Fox. - Andrey Zabolotskiy, Mar 16 2023

Examples

			a(3) = 4 since p(x) = (-x^2 + 7*x - 4) / 2 interpolates p(1) = 1, p(2) = 3, p(3) = 4, and p(4) = 4.
		

Crossrefs

Cf. A000032, A000045, A201157 (bisection), A002878 (bisection). A005013.

Programs

  • Haskell
    a203976 n = a203976_list !! n
    a203976_list = 0 : 1 : 5 : 4 : zipWith (-)
       (map (* 3) $ drop 2 a203976_list) a203976_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,5,4]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 29 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{0,1,5,4},40] (* Harvey P. Dale, Apr 06 2013 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), 5 * fibonacci(n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), polcoeff( x * (1 + 5*x + x^2) / (1 - 3*x^2 + x^4) + x * O(x^n), n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k-1) + fibonacci(k+1) )), x, n + 1))}
    

Formula

a(1) = 1, a(2) = 5, a(3) = 4, a(n) * a(n-3) = a(n-1) * a(n-2) - 5. a(-n) = -a(n).
G.f.: x * (1 + 5*x + x^2) / ( (x^2+x-1)*(x^2-x-1) ).
a(2*n) = 5 * A000045(2*n) (Fibonacci). a(2*n+1) = A000032(2*n+1) (Lucas).
a(A004277(n)) = A054888(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = A000032(n+1) - A061084(n). - R. J. Mathar, Jun 23 2013
a(2n) = a(2n-1) + a(2n+1), for n>0. - Richard R. Forberg, Aug 01 2013
a(n) = (2^(-1-n)*((-5-sqrt(5)+(-1)^n*(-5+sqrt(5)))*((-1+sqrt(5))^n-(1+sqrt(5))^n)))/sqrt(5). - Colin Barker, Mar 28 2016
E.g.f.: exp(-phi*x)*(exp(x) - 1)*(phi*exp(sqrt(5)*x) - 1/phi), where phi = (1 + sqrt(5))/2. - G. C. Greubel, Mar 28 2016

A075155 Cubes of Lucas numbers.

Original entry on oeis.org

8, 1, 27, 64, 343, 1331, 5832, 24389, 103823, 438976, 1860867, 7880599, 33386248, 141420761, 599077107, 2537716544, 10749963743, 45537538411, 192900170952, 817138135549, 3461452853383, 14662949322176, 62113250509227, 263115950765039, 1114577054530568
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 06 2002

Keywords

Crossrefs

Third row of array A103324.

Programs

  • Magma
    [ Lucas(n)^3 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    CoefficientList[Series[(8 - 23*x - 24*x^2 + x^3)/((x^2 + 4*x - 1)*(x^2 - x - 1)), {x,0,50}], x] (* or *) Table[LucasL[n]^3, {n,0,30}] (* or *) LinearRecurrence[{3,6,-3,-1}, {8, 1, 27, 64}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    a(n)=(fibonacci(n-1)+fibonacci(n+1))^3 \\ Charles R Greathouse IV, Feb 09 2016
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(n)**3
    print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 01 2021

Formula

a(n) = 3*(-1)^n*L(n) + L(3*n).
a(n) = (-1)^n*A075151(n).
a(n) = A000032(n)^3 = A000032(n) * A001254(n).
a(n) = L(n)*C(n)^2, L(n) = Lucas numbers (A000032), C(n) = reflected Lucas numbers (comment to A061084).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4), n>=4.
G.f.: ( 8-23*x-24*x^2+x^3 )/( (x^2+4*x-1)*(x^2-x-1) ).
a(n) = 2*A001077(n) + 3*A061084(n+1). - R. J. Mathar, Nov 17 2011
a(n) = L(3*n) + (F(n+4) - F(n-4))*(-1)^n, n>3 and F(n)=A000045(n). - J. M. Bergot, Feb 09 2016
a(n) + Sum_{i=0..n+1} a(i) = 19/2 + (5/2)*L(3*n+2). - Greg Dresden, Feb 24 2025

Extensions

Simpler definition from Ralf Stephan, Nov 01 2004

A074062 Reflected (see A074058) pentanacci numbers A074048.

Original entry on oeis.org

5, -1, -1, -1, -1, 9, -7, -1, -1, -1, 19, -23, 5, -1, -1, 39, -65, 33, -7, -1, 79, -169, 131, -47, 5, 159, -417, 431, -225, 57, 313, -993, 1279, -881, 339, 569, -2299, 3551, -3041, 1559, 799, -5167, 9401, -9633, 6159, 39, -11133, 23969, -28667, 21951, -6081, -22305
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002

Keywords

Comments

a(n) is also the trace of A^(-n), where A is the matrix ( (1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), (1,0,0,0,0) ).
a(n) is also the sum of determinants of 4th-order principal minors of A^n.

Crossrefs

Programs

  • Magma
    I:=[5,-1,-1,-1,-1]; [n le 5 select I[n] else (-1)*(Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4)) + Self(n-5): n in [1..61]]; // G. C. Greubel, Jul 05 2021
    
  • Mathematica
    CoefficientList[Series[(5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5), {x, 0, 60}], x]
  • PARI
    Vec((5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) + O(x^60)) \\ Michel Marcus, Sep 14 2020
    
  • Sage
    def A074062_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) ).list()
    A074062_list(60) # G. C. Greubel, Jul 05 2021

Formula

a(n) = -a(n-1) -a(n-2) -a(n-3) -a(n-4) +a(n-5), a(0)=5, a(1)=-1, a(2)=-1, a(3)=-1, a(4)=-1.
G.f.: (5 +4*x +3*x^2 +2*x^3 +x^4)/(1 +x +x^2 +x^3 +x^4 -x^5).

Extensions

More terms from Michel Marcus, Sep 14 2020

A263575 Stirling transform of Lucas numbers (A000032).

Original entry on oeis.org

2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
    Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}]

Formula

a(n) = Sum_{k=0..n} A000032(k)*Stirling2(n,k).
Let phi = (1+sqrt(5))/2.
a(n) = B_n(phi)+B_n(1-phi), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = a(n) + A263576*sqrt(5).
E.g.f.: exp((exp(x)-1)*phi)+exp((exp(x)-1)*(1-phi)).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000032(n).
G.f.: Sum_{j>=0} Lucas(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019

A099163 Expansion of (1-2*x^2)/((1-2*x)*(1+x-x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 27, 49, 106, 199, 419, 804, 1663, 3237, 6618, 13003, 26383, 52156, 105299, 209001, 420586, 836991, 1680747, 3350548, 6718807, 13408957, 26864282, 53653539, 107428471, 214660524, 429638859, 858763489, 1718359018, 3435371767
Offset: 0

Views

Author

Paul Barry, Oct 01 2004

Keywords

Comments

Counts closed walks of length n at the vertex with loop of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is A099164.
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ (.5'i + .5i' + .5'ii' + .5e)*(.5j' + .5'kk' + .5'ki' + .5e) ], 1vesforseq = A000079(n+2) (Dement)

Crossrefs

Cf. A039834.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x^2)/((1 - 2 x) (1 + x - x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Sep 14 2022 *)
  • PARI
    a(n)=sum(k=-n\5,n\5,binomial(n,(n-5*k)\2)) \\ Paul D. Hanna, Jan 02 2009
    
  • PARI
    a(n)=-fibonacci(n+1)+2*sum(k=-n\10,n\10,binomial(n,n\2-5*k)) \\ Paul D. Hanna, Jan 02 2009

Formula

a(n)=a(n-1)+3a(n-2)-2a(n-3); a(n)=((sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+2^(n+1)/5; a(n)=sum{k=0..n, (-1)^(n-k)Fib(n-k+1)(2^(k-1)+0^k/2-sum{j=0..k, C(k, j)j(-1)^j})}.
4*a(n+1) - a(n+3) = A039834(n) - Creighton Dement, Feb 25 2005
Contribution from Paul D. Hanna, Jan 02 2009: (Start)
a(n) = Sum_{k=-[n/5]..[n/5]} C(n, [(n-5*k)/2]).
a(n) = 2*Sum_{k=-[n/10]..[n/10]} C(n, [n/2]-5*k) - fibonacci(n+1). (End)
5*a(n) = 2^(n+1) + A061084(n+1), n>0. - R. J. Mathar, Sep 11 2019
Showing 1-10 of 22 results. Next