cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061316 a(n) = n*(n+1)*(n^2 + n + 4)/4.

Original entry on oeis.org

0, 3, 15, 48, 120, 255, 483, 840, 1368, 2115, 3135, 4488, 6240, 8463, 11235, 14640, 18768, 23715, 29583, 36480, 44520, 53823, 64515, 76728, 90600, 106275, 123903, 143640, 165648, 190095, 217155, 247008, 279840, 315843, 355215, 398160, 444888
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Crossrefs

Programs

  • Maple
    a:=n->sum((n+j^3),j=0..n): seq(a(n),n=0..36); # Zerinvary Lajos, Jul 27 2006
    with(combinat):a:=n->sum(fibonacci(4,i), i=0..n): seq(a(n), n=0..36); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    s=0;lst={};Do[s+=n^3+n*2;AppendTo[lst,s],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 04 2009 *)
    Table[n(n+1)(n^2+n+4)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {0,3,15,48,120},40] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    a(n) = n*(n + 1)*(n^2 + n + 4)/4 \\ Harry J. Smith, Jul 21 2009

Formula

a(n) = n*(n+1)*(n^2 + n + 4)/4.
a(n) = A005563(A000217(n)) = 3*A006007(n) = A061314(n, 2).
a(0)=0, a(1)=3, a(2)=15, a(3)=48, a(4)=120, a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5).
G.f.: (-3 (x + x^3))/(-1 + x)^5. - Harvey P. Dale, May 03 2011
Sum_{n>=1} 1/a(n) = 5/4 - tanh(sqrt(15)*Pi/2)*Pi/sqrt(15). - Amiram Eldar, Aug 20 2022
E.g.f.: exp(x)*x*(12 + 18*x + 8*x^2 + x^3)/4. - Stefano Spezia, Aug 31 2023