A061354 Numerator of Sum_{k=0..n} 1/k!.
1, 2, 5, 8, 65, 163, 1957, 685, 109601, 98641, 9864101, 13563139, 260412269, 8463398743, 47395032961, 888656868019, 56874039553217, 7437374403113, 17403456103284421, 82666416490601, 6613313319248080001, 69439789852104840011
Offset: 0
Examples
1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006), 637-641.
- J. Sondow, The Taylor series for e and the primes 2, 5, 13, 37, 463, ...: a surprising connection
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
exp[n_]:=Apply[Plus,1/Range[0,n]!];Numerator[Table[exp[n],{n,0,21}]] (* Geoffrey Critzer, May 05 2013 *) A061354[n_] := Numerator[Sum[1/k!, {k, 0, n}]]; Array[A061354, 22, 0] (* JungHwan Min, Nov 08 2016 *) Accumulate[1/Range[0,30]!]//Numerator (* Harvey P. Dale, Apr 13 2018 *)
-
PARI
{ default(realprecision, 500); e=exp(1); for (n=0, 200, a=numerator(floor(n!*e)/n!); if (n==0, a=1); write("b061354.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
Formula
Numerators of floor(n!*exp(1))/n!, n>=1. Numerators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = (1+n+n(n-1)+...+n!)/GCD(n!,1+n+n(n-1)+...+n!). - Jonathan Sondow, Aug 18 2006
Comments