cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A129924 Primes p such that p divides both A061354(p-3) and A061354(p-1).

Original entry on oeis.org

5, 13, 37, 463
Offset: 1

Views

Author

Alexander Adamchuk, Jun 06 2007

Keywords

Comments

Conjecture: a(n) = A064384(n+1).
Also primes p such that p divides A120265(p-2), where A120265(n) = A061354(n) - A061355(n) = Numerator of Sum[1/k!,{k,1,n}].
The conjecture is true. It is the case n = p-3 of the relation GCD(A061354(n), A061354(n+2)) = A124779(n), which follows from the Comments in A064384 and A124779. For a proof, see the link "The Taylor series for e ...". - Jonathan Sondow, Jun 12 2007
Michael Mossinghoff has calculated that 5, 13, 37, 463 are the only terms up to 150 million. Heuristics suggest the sequence is infinite but very sparse. - Jonathan Sondow, Jun 12 2007

Crossrefs

Cf. A061354 = Numerator of Sum_{k=0..n} 1/k!. Cf. A064384, A124779.
Cf. A120265 = Numerator of Sum[1/k!, {k, 1, n}]. Cf. A061355.

Programs

  • Mathematica
    g=1; Do[ g=g+1/n!; f=Numerator[g]; If[ PrimeQ[n+3] && IntegerQ[f/(n+3)], Print[n+3]], {n,1,1000}]

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A061355 Denominator of Sum_{k=0..n} 1/k!.

Original entry on oeis.org

1, 1, 2, 3, 24, 60, 720, 252, 40320, 36288, 3628800, 4989600, 95800320, 3113510400, 17435658240, 326918592000, 20922789888000, 2736057139200, 6402373705728000, 30411275102208, 2432902008176640000, 25545471085854720000, 224800145555521536000
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Comments

An inverse of A002034: A002034(a(n)) = n for n > 0. But not the least inverse: a(n) > A046021(n) for n > 3. - Jonathan Sondow, Jan 09 2005

Examples

			1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
		

Crossrefs

Cf. A061354 (numerators), A093101.
a(n) = n!/A093101(n) for n > 0. See also A002034, A046021.

Programs

  • GAP
    List(List([0..25],n->Sum([0..n],k->1/Factorial(k))),DenominatorRat); # Muniru A Asiru, Jun 01 2018
  • Maple
    BB:=n->sum(1/i!, i=1..n): a:=n->floor(denom(BB(n))): seq(a(n), n=0..22); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    A061355[n_] := Denominator[Sum[1/k!, {k, 0, n}]]; Array[A061355, 23, 0] (* JungHwan Min, Nov 08 2016 *)
    Accumulate[1/Range[0,30]!]//Denominator (* Harvey P. Dale, Mar 24 2025 *)
  • PARI
    { default(realprecision, 500); e=exp(1); for (n=0, 200, a=denominator(floor(n!*e)/n!); write("b061355.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
    
  • PARI
    first(n) = my(res = vector(n), s = 0, f = 1); for(i = 1, n, f *= i; s += 1/f; res[i] = denominator(s)); res \\ David A. Corneth, May 31 2018
    

Formula

Denominators of floor(n!*exp(1))/n!. Denominators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = n!/gcd(n!, 1 + n + n(n-1) + n(n-1)(n-2) + ... + n!). - Jonathan Sondow, Jan 09 2005
a(n) = denominator(exp(1)*gamma(n + 1,1)/gamma(n + 1)). - Gerry Martens, May 31 2018

A093101 Cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 20, 1, 10, 1, 8, 5, 2, 5, 4, 1, 130, 1, 4000, 1, 2, 5, 52, 5, 494, 1, 40, 1, 10, 13, 4, 25, 38, 5, 16, 13, 230, 13, 20, 1, 46, 5, 104, 475, 62, 1, 20, 1, 130, 31, 832, 2755, 74, 5, 4, 13, 50, 1, 40, 23, 2, 2795, 76, 34385, 2, 1, 80, 1, 650, 1, 2812, 5, 74, 5
Offset: 0

Views

Author

Jonathan Sondow, May 10 2004, Oct 18 2006

Keywords

Comments

Same as n!/A061355(n) and (1+n+n(n-1)+n(n-1)(n-2)+...+n!)/A061354(n).
a(n) is relatively prime to n.
gcd(a(n),a(n+1)) = 1.

Examples

			E.g. 1/0!+1/1!+1/2!+1/3!=16/6=(2*8)/(2*3) so a(3)=2.
		

Crossrefs

(n+1)!/(a(n)*a(n+1)) = A123899(n).
(n+3)!/(a(n)*a(n+1)*a(n+2)) = A123900(n).
(n+3)/GCD(a(n), a(n+2)) = A123901(n).
Cf. also A000522, A061354, A061355.

Programs

  • Mathematica
    f[n_] := n! / Denominator[ Sum[1/k!, {k, 0, n}]]; Table[ f[n], {n, 0, 74}] (* Robert G. Wilson v *)
    (* Second program: *)
    A[n_] := If[n==0,1,n*A[n-1]+1]; Table[GCD[A[n],n! ], {n, 0, 74}]
  • PARI
    A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014
    A093101(n) = gcd(n!,A000522(n)); \\ Antti Karttunen, Jul 12 2017

Formula

a(n) = gcd(n!, 1+n+n(n-1)+n(n-1)(n-2)+...+n!).
a(n) = gcd(n!, A(n)) where A(0) = 1, A(n) = n*A(n-1)+1.

Extensions

More terms from Robert G. Wilson v, May 14 2004

A137452 Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1).

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 18 2008

Keywords

Comments

Row sums give A177885.
The Abel polynomials are associated with the Abel operator t*exp(y*t)*p(x) = t*p(x+y).
From Peter Luschny, Jan 14 2009: (Start)
Abs(T(n,k)) is the number of rooted labeled trees on n+1 vertices with a root degree k (Clarke's formula).
The row sums in the unsigned case, Sum_{k=0..n} abs(T(n,k)), count the trees on n+1 labeled nodes, A000272(n+1). (End)
Exponential Riordan array [1, W(x)], W(x) the Lambert W-function. - Paul Barry, Nov 19 2010
The inverse array is the exponential Riordan array [1, x*exp(x)], which is A059297. - Peter Bala, Apr 08 2013
The inverse Bell transform of [1,2,3,...]. See A264428 for the Bell transform and A264429 for the inverse Bell transform. - Peter Luschny, Dec 20 2015
Also the Bell transform of (-1)^n*(n+1)^n. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins:
  1;
  0,        1;
  0,       -2,       1;
  0,        9,      -6,       1;
  0,      -64,      48,     -12,      1;
  0,      625,    -500,     150,    -20,      1;
  0,    -7776,    6480,   -2160,    360,    -30,    1;
  0,   117649, -100842,   36015,  -6860,    735,  -42,   1;
  0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29

Crossrefs

Row sums A177885.
Cf. A000272, A061356, A059297 (inverse array), A264429.

Programs

  • Maple
    T := proc(n,k) if n = 0 and k = 0 then 1 else binomial(n-1,k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n,k),k=0..n)),n=0..7); # Peter Luschny, Jan 14 2009
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1]
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, (-n-1)^n], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_transform from A264429]
    def A137452_matrix(dim):
        nat = [n for n in (1..dim)]
        return inverse_bell_transform(dim, nat)
    A137452_matrix(10) # Peter Luschny, Dec 20 2015

Formula

Row n gives the coefficients of the expansion of x*(x-n)^(n-1).
Abs(T(n,k)) = C(n-1,k-1)*n^(n-k). - Peter Luschny, Jan 14 2009
From Wolfdieter Lang, Nov 08 2022: (Start)
From the exponential Riordan (also Sheffer of Jabotinsky) type (1, LambertW) array (see comments).
E.g.f. of column sequence k, LambertW(x)^k/k!, for k >= 0.
E.g.f. of row polynomials P_n(y) = Sum_{k=0..n} T(n, k)*y^k: exp(y*LambertW(x)).
Recurrence for T: T(n, k) = 0 for n < k; T(n, 0) = 1 for n = 0 otherwise 0; T(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j,k-1)*(-1)^j*T(n-1, k-1+j). (Jabotinsky type convolution triangle, the e.g.f.s for the a- and z-sequences are exp(-x), and 0. See the link in A006232.)
Recurrence for column k of T: T(n, k) = 0 for n < k, T(k, k) = 1, for k >= 0 otherwise T(n, k) = (n!*k/(n-k))*Sum_{j=k..n-1} (1/j!)*beta(n-1-j)*T(j, k), where beta(n) = A264234(n+1)/A095996(n+1) = {-1, 2, -9/2, 32/3, -625/24, ...} with o.g.f. d/dx(log(LambertW(x)/x)). See the Boas-Buck or Rainville references given in A046521, and my Aug 10 2017 comment there.
Recurrence for the row polynomials P_0(x) = 1, and P_n(x) = x*substitute(z=d/dx, exp(-z)/(1+z)) P_(n-1)(x), for n >= 1, with coefficient z^k of exp(-z)/(1+z) given by (-1)^k*A061354(k)/A061355(k). See the Roman reference Corollary 3.7.2., p. 50. (End)
The column sequences for the unsigned triangle Abs(T(n, k)), for k >= 2, are also given by {n^(n-k)*(n-1)*s(k-2, n)/(k-1)!}A049444.%20-%20_Wolfdieter%20Lang">{n>=k} with the row polynomials s(n, x) = risingfactorial(x - (n+1), n) of A049444. - _Wolfdieter Lang, Nov 21 2022

Extensions

Better name by Peter Bala, Apr 08 2013
Edited by Joerg Arndt, Apr 08 2013

A120265 a(n) = numerator(Sum_{k=1..n} 1/k!).

Original entry on oeis.org

1, 3, 5, 41, 103, 1237, 433, 69281, 62353, 6235301, 8573539, 164611949, 5349888343, 29959374721, 561738276019, 35951249665217, 4701317263913, 11001082397556421, 52255141388393, 4180411311071440001, 43894318766250120011, 386270005143001056097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 30 2006

Keywords

Examples

			1, 3/2, 5/3, 41/24, 103/60, 1237/720, 433/252, 69281/40320, 62353/36288, 6235301/3628800, 8573539/4989600, 164611949/
95800320, 5349888343/3113510400, ...
		

Crossrefs

Cf. A061354, A061355 (denominator).

Programs

  • Maple
    a:= n-> numer(add(1/i!, i=1..n)): seq(a(n), n=1..23); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    Numerator[Table[Sum[1/k!,{k,1,n}],{n,1,30}]]
  • PARI
    a(n) = numerator(sum(k=1, n, 1/k!)); \\ Michel Marcus, Jun 01 2018

Formula

A061355(n) = denominator(Sum_{k=1..n} 1/k!).
a(n) = A061354(n) - A061355(n).
a(n) = numerator(exp(1)*gamma(n + 1,1)/gamma(n + 1) - 1). - Gerry Martens, May 31 2018
(exp(x)-1) / (1-x) is the o.g.f. for the sequence of fractions. - Joerg Arndt, Jun 01 2018

A064384 Primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!.

Original entry on oeis.org

2, 5, 13, 37, 463
Offset: 1

Views

Author

Kevin Buzzard (buzzard(AT)ic.ac.uk), Sep 28 2001

Keywords

Comments

If p is in the sequence then p divides 0!-1!+2!-3!+...+(-1)^N N! for all sufficiently large N. Naive heuristics suggest that the sequence should be infinite but very sparse.
Same as the terms > 1 in A124779. - Jonathan Sondow, Nov 09 2006
A prime p is in the sequence if and only if p|A(p-1), where A(0) = 1 and A(n) = n*A(n-1)+1 = A000522(n). - Jonathan Sondow, Dec 22 2006
Also, a prime p is in this sequence if and only if p divides A061354(p-1). - Alexander Adamchuk, Jun 14 2007
Michael Mossinghoff has calculated that 2, 5, 13, 37, 463 are the only terms up to 150 million. - Jonathan Sondow, Jun 12 2007

Examples

			5 is in the sequence because 5 is prime and it divides 0!-1!+2!-3!+4!=20.
		

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B43.

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], PrimeQ], (Mod[Sum[(-1)^(p - 1)*p!, {p, 2, # - 1}], #] == 0) &] (* Julien Kluge, Feb 13 2016 *)
    a[0] = 1; a[n_] := a[n] = n*a[n - 1] + 1; Select[Select[Range[500], PrimeQ], (Mod[a[# - 1], #] == 0) &] (* Julien Kluge, Feb 13 2016 with the sequence approach suggested by Jonathan Sondow *)
    Select[Prime[Range[500]],Divisible[AlternatingFactorial[#]-1,#]&] (* Harvey P. Dale, Jan 08 2021 *)
  • PARI
    A=1;for(n=1,1000,if(isprime(n),if(Mod(A,n)==0,print(n)));A=n*A+1) \\ Jonathan Sondow, Dec 22 2006

Extensions

Edited by Max Alekseyev, Mar 05 2011

A124779 a(n) = gcd(A(n), A(n+2))/gcd(d(n), d(n+2)) where A(n) = Sum_{k=0..n} n!/k! and d(n) = gcd(A(n), n!).

Original entry on oeis.org

1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Jonathan Sondow, Nov 07 2006

Keywords

Comments

The next term > 1 is a(460) = 463. The primes 2, 5, 13, 37, 463 are the only terms > 1 up to n = 600000. If a(n) > 1 with n > 1, then a(n) = n+3 is prime. This uses A(n+2) = (n+2)(n+1)*A(n) + n+3. The terms > 1 are A064384 = primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!. The proof uses (n-1)!/(n-k-1)! = (n-1)(n-2)...(n-k) == (-1)^k k! (mod n). Cf. Cloitre's comment in A064383.
An integer p > 1 is in the sequence if and only if p is prime and p|A(p-1), where A(0) = 1 and A(n) = n*A(n-1)+1 for n > 0. - Jonathan Sondow, Dec 22 2006
Michael Mossinghoff has calculated that there are only five primes in the sequence up to 150 million. Heuristics suggest it contains infinitely many. - Jonathan Sondow, Jun 12 2007

Examples

			a(2) = gcd(A(2), A(4))/gcd(d(2), d(4)) = gcd(5, 65)/gcd(1, 1) = 5/1 = 5.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 3rd edition, 2004, B43.

Crossrefs

A(n) = A000522, d(n) = A093101, gcd(A(n), A(n+2)) = A124780, gcd(d(n), d(n+2)) = A124781, (n+3)/gcd(A(n), A(n+2)) = A124782, (n+3)/gcd(d(n), d(n+2)) = A123901. Cf. A061354, A061355, A123899, A123900.
Cf. A129924.

Programs

  • Mathematica
    (A[n_] := Sum[n!/k!, {k, 0, n}]; d[n_] := GCD[A[n],n! ]; Table[GCD[A[n],A[n+2]]/GCD[d[n],d[n+2]], {n,0,100}])
  • PARI
    A124779(n)={my(An=A000522(n),A2=A000522(n+2));gcd(An, A2)/gcd([An,n!,A2,(n+2)!])} \\ M. F. Hasler, Jun 04 2019

Formula

a(n) = A124780(n)/A124781(n) = A124782(n)/A123901(n).
a(n) = gcd(A(n), A(n+2))/gcd(A(n), A(n+2), n!) where A(n)=1+n+n(n-1)+...+n!. - Jonathan Sondow, Nov 10 2006
a(n) = gcd(N(n), N(n+2)), where N(n) = A061354(n) = numerator of Sum[1/k!,{k,0,n}]. - Jonathan Sondow, Jun 12 2007

A123901 a(n) = (n+3)/gcd(d(n), d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0..n} 1/k! to lowest terms.

Original entry on oeis.org

3, 4, 5, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 1, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 3, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 2, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 1, 33, 67, 34, 69, 7, 71, 36, 73, 1, 15, 38, 77, 3, 79, 8, 81
Offset: 0

Views

Author

Jonathan Sondow, Oct 18 2006

Keywords

Examples

			a(5) = 4 because (5+3)/gcd(d(5),d(7)) = 8/gcd(2,20) = 8/2 = 4.
		

Crossrefs

Programs

  • Mathematica
    (A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+3)/GCD[d[n],d[n+2]], {n,0,79}])
    (* Second program, faster: *)
    Table[(n + 3)/Apply[GCD, Map[GCD[#!, Floor[E*#!] - Boole[# == 0]] &, n + {0, 2}]], {n, 0, 78}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014
    A093101(n) = gcd(n!,A000522(n));
    m1=m2=1; for(n=0,4096,m=m1; m1=m2; m2 = A093101(n+2); m124781 = gcd(m,m2); write("b093101.txt", n, " ", m); write("b124781.txt", n, " ", m124781); write("b123901.txt", n, " ", (n+3)/m124781)); \\ Antti Karttunen, Jul 12 2017

Formula

a(n) = (n+3)/A124781(n) = (n+3)/gcd(A093101(n),A093101(n+2)) where A093101(n) = gcd(n!,1+n+n(n-1)+...+n!).

A123899 a(n) = (n+1)!/(d(n)*d(n+1)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

1, 2, 3, 12, 60, 360, 252, 2016, 36288, 362880, 4989600, 11975040, 622702080, 8717829120, 65383718400, 5230697472000, 2736057139200, 49249028505600, 30411275102208, 608225502044160, 25545471085854720000
Offset: 0

Views

Author

Jonathan Sondow, Oct 18 2006

Keywords

Examples

			a(2) = 3 because (2+1)!/(d(2)*d(3)) = 3!/(gcd(2,5)*gcd(6,16)) = 6/2 = 3.
		

Crossrefs

Programs

  • Mathematica
    (A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+1)!/(d[n]*d[n+1]), {n,0,22}])

Formula

a(n) = (n+1)!/(A093101(n)*A093101(n+1)) where A093101(n)=gcd(n!,1+n+n(n-1)+...+n!).
Showing 1-10 of 33 results. Next