cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A129978 Numbers k such that A120265(k) = numerator(Sum_{j=1..k} 1/j!) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 12, 16, 19, 21, 22, 25, 41, 114, 181, 236, 2003, 6138
Offset: 1

Views

Author

Alexander Adamchuk, Jun 13 2007

Keywords

Comments

Corresponding primes are A120265(a(n)) = {3, 5, 41, 103, 1237, 433, 164611949, 35951249665217, 52255141388393, 43894318766250120011, 386270005143001056097, 53952693026046706215979, 1249584099900912571604389306768231303904375213027, ...}.
a(17) > 1000; A120265(1000) ~ 2.9*10^2564 = (e-1)*A061355(1000). - M. F. Hasler, Jun 18 2007

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ 1/k!, {k,1,n} ] ]; If[ PrimeQ[f], Print[{n,f}] ], {n,1,236} ]
    Flatten[Position[Numerator[Accumulate[1/Range[2150]!]],?PrimeQ]] (* _Harvey P. Dale, May 03 2013 *)
  • PARI
    my(t=0); for( n=1,1000, if( ispseudoprime( numerator( t+=1/n!)), print1( n", " ))) \\ M. F. Hasler, Jun 18 2007

Extensions

Edited by M. F. Hasler, Jun 18 2007
a(17) from Alexander Adamchuk, May 02 2010
a(18) from Michael S. Branicky, Sep 24 2024

A354211 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.

Original entry on oeis.org

1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).

A354332 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k+1)!.

Original entry on oeis.org

1, 5, 101, 4241, 305353, 33588829, 209594293, 1100370038249, 23023126954133, 102360822438075317, 42991545423991633141, 4350744396907953273869, 13052233190723859821607001, 9162667699888149594768114701, 7440086172309177470951709137213, 364172638960396581472899447242531
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354332(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sin(sqrt(x)) / (sqrt(x) * (1 - x)).

A354334 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k)!.

Original entry on oeis.org

1, 3, 37, 1111, 6913, 799933, 739138093, 44841044309, 32285551902481, 9879378882159187, 1251387991740163687, 1734423756551866870183, 136771701945232930334431, 23048564587067030852654113, 42769754577382930342215977687, 409306551305554643375006906464591
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
    Accumulate[1/(2*Range[0,20])!]//Numerator (* Harvey P. Dale, Sep 05 2024 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354334(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).

A129924 Primes p such that p divides both A061354(p-3) and A061354(p-1).

Original entry on oeis.org

5, 13, 37, 463
Offset: 1

Views

Author

Alexander Adamchuk, Jun 06 2007

Keywords

Comments

Conjecture: a(n) = A064384(n+1).
Also primes p such that p divides A120265(p-2), where A120265(n) = A061354(n) - A061355(n) = Numerator of Sum[1/k!,{k,1,n}].
The conjecture is true. It is the case n = p-3 of the relation GCD(A061354(n), A061354(n+2)) = A124779(n), which follows from the Comments in A064384 and A124779. For a proof, see the link "The Taylor series for e ...". - Jonathan Sondow, Jun 12 2007
Michael Mossinghoff has calculated that 5, 13, 37, 463 are the only terms up to 150 million. Heuristics suggest the sequence is infinite but very sparse. - Jonathan Sondow, Jun 12 2007

Crossrefs

Cf. A061354 = Numerator of Sum_{k=0..n} 1/k!. Cf. A064384, A124779.
Cf. A120265 = Numerator of Sum[1/k!, {k, 1, n}]. Cf. A061355.

Programs

  • Mathematica
    g=1; Do[ g=g+1/n!; f=Numerator[g]; If[ PrimeQ[n+3] && IntegerQ[f/(n+3)], Print[n+3]], {n,1,1000}]

A354298 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, numer(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A353545 a(n) is the numerator of Sum_{k=1..n} 1 / (k*k!).

Original entry on oeis.org

1, 5, 47, 379, 9487, 14233, 87179, 44635753, 1205165611, 6025828181, 729125211161, 972166948343, 54765404757169, 71879593743829, 25876653747779441, 6624423359431551911, 1914458350875718742519, 51690375473644406388353, 18660225545985630712321553, 186602255459856307126125437
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A353545(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022

Formula

Numerators of coefficients in expansion of (Ei(x) - log(x) - gamma) / (1 - x), x > 0.

A354402 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).

Original entry on oeis.org

1, 3, 29, 229, 5737, 8603, 210781, 26979863, 728456581, 3642282779, 440716217519, 1762864869691, 297924162982399, 260683642609331, 15641018556560861, 4004100750479565401, 1157185116888594641129, 31243998155992054970143, 11279083334313131850347743, 112790833343131318500567523
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A354402(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022

Formula

Numerators of coefficients in expansion of (gamma + log(x) - Ei(-x)) / (1 - x), x > 0.

A354302 a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).

A354304 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).
Showing 1-10 of 11 results. Next