A129978
Numbers k such that A120265(k) = numerator(Sum_{j=1..k} 1/j!) is a prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 12, 16, 19, 21, 22, 25, 41, 114, 181, 236, 2003, 6138
Offset: 1
-
Do[ f=Numerator[ Sum[ 1/k!, {k,1,n} ] ]; If[ PrimeQ[f], Print[{n,f}] ], {n,1,236} ]
Flatten[Position[Numerator[Accumulate[1/Range[2150]!]],?PrimeQ]] (* _Harvey P. Dale, May 03 2013 *)
-
my(t=0); for( n=1,1000, if( ispseudoprime( numerator( t+=1/n!)), print1( n", " ))) \\ M. F. Hasler, Jun 18 2007
A354211
a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.
Original entry on oeis.org
1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
Offset: 0
1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
Cf.
A009445,
A053557,
A061354,
A073742,
A103816,
A120265,
A143382,
A289381,
A354331 (denominators),
A354332,
A354334.
-
Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
-
a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022
A354332
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k+1)!.
Original entry on oeis.org
1, 5, 101, 4241, 305353, 33588829, 209594293, 1100370038249, 23023126954133, 102360822438075317, 42991545423991633141, 4350744396907953273869, 13052233190723859821607001, 9162667699888149594768114701, 7440086172309177470951709137213, 364172638960396581472899447242531
Offset: 0
1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
Cf.
A009445,
A049469,
A053557,
A061354,
A103816,
A120265,
A143382,
A354211,
A354298,
A354333 (denominators),
A354334.
-
Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
-
a(n) = numerator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354332(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022
A354334
a(n) is the numerator of Sum_{k=0..n} 1 / (2*k)!.
Original entry on oeis.org
1, 3, 37, 1111, 6913, 799933, 739138093, 44841044309, 32285551902481, 9879378882159187, 1251387991740163687, 1734423756551866870183, 136771701945232930334431, 23048564587067030852654113, 42769754577382930342215977687, 409306551305554643375006906464591
Offset: 0
1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
-
Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
Accumulate[1/(2*Range[0,20])!]//Numerator (* Harvey P. Dale, Sep 05 2024 *)
-
a(n) = numerator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354334(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022
A129924
Primes p such that p divides both A061354(p-3) and A061354(p-1).
Original entry on oeis.org
- J. Sondow, The Taylor series for e and the primes 2, 5, 13, 37, 463, ...: a surprising connection
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
-
g=1; Do[ g=g+1/n!; f=Numerator[g]; If[ PrimeQ[n+3] && IntegerQ[f/(n+3)], Print[n+3]], {n,1,1000}]
A354298
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
Original entry on oeis.org
1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1
1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
Cf.
A001147,
A053557,
A061354,
A064646,
A103816,
A113012,
A120265,
A143382,
A289381,
A306858,
A354299 (denominators).
-
S:= 0: R:= NULL:
for n from 1 to 100 do
S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
R:= R, numer(S);
od:
R; # Robert Israel, Jan 10 2024
-
Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator
A353545
a(n) is the numerator of Sum_{k=1..n} 1 / (k*k!).
Original entry on oeis.org
1, 5, 47, 379, 9487, 14233, 87179, 44635753, 1205165611, 6025828181, 729125211161, 972166948343, 54765404757169, 71879593743829, 25876653747779441, 6624423359431551911, 1914458350875718742519, 51690375473644406388353, 18660225545985630712321553, 186602255459856307126125437
Offset: 1
1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
-
Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
-
a(n) = numerator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A353545(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022
A354402
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
Original entry on oeis.org
1, 3, 29, 229, 5737, 8603, 210781, 26979863, 728456581, 3642282779, 440716217519, 1762864869691, 297924162982399, 260683642609331, 15641018556560861, 4004100750479565401, 1157185116888594641129, 31243998155992054970143, 11279083334313131850347743, 112790833343131318500567523
Offset: 1
1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
-
Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
-
a(n) = numerator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A354402(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022
A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A354304
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.
Original entry on oeis.org
1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0
1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
-
Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
Showing 1-10 of 11 results.
Comments