cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061355 Denominator of Sum_{k=0..n} 1/k!.

Original entry on oeis.org

1, 1, 2, 3, 24, 60, 720, 252, 40320, 36288, 3628800, 4989600, 95800320, 3113510400, 17435658240, 326918592000, 20922789888000, 2736057139200, 6402373705728000, 30411275102208, 2432902008176640000, 25545471085854720000, 224800145555521536000
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Comments

An inverse of A002034: A002034(a(n)) = n for n > 0. But not the least inverse: a(n) > A046021(n) for n > 3. - Jonathan Sondow, Jan 09 2005

Examples

			1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
		

Crossrefs

Cf. A061354 (numerators), A093101.
a(n) = n!/A093101(n) for n > 0. See also A002034, A046021.

Programs

  • GAP
    List(List([0..25],n->Sum([0..n],k->1/Factorial(k))),DenominatorRat); # Muniru A Asiru, Jun 01 2018
  • Maple
    BB:=n->sum(1/i!, i=1..n): a:=n->floor(denom(BB(n))): seq(a(n), n=0..22); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    A061355[n_] := Denominator[Sum[1/k!, {k, 0, n}]]; Array[A061355, 23, 0] (* JungHwan Min, Nov 08 2016 *)
    Accumulate[1/Range[0,30]!]//Denominator (* Harvey P. Dale, Mar 24 2025 *)
  • PARI
    { default(realprecision, 500); e=exp(1); for (n=0, 200, a=denominator(floor(n!*e)/n!); write("b061355.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
    
  • PARI
    first(n) = my(res = vector(n), s = 0, f = 1); for(i = 1, n, f *= i; s += 1/f; res[i] = denominator(s)); res \\ David A. Corneth, May 31 2018
    

Formula

Denominators of floor(n!*exp(1))/n!. Denominators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = n!/gcd(n!, 1 + n + n(n-1) + n(n-1)(n-2) + ... + n!). - Jonathan Sondow, Jan 09 2005
a(n) = denominator(exp(1)*gamma(n + 1,1)/gamma(n + 1)). - Gerry Martens, May 31 2018