cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061358 Number of ways of writing n = p+q with p, q primes and p >= q.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 3, 0, 3, 1, 3, 0, 2, 0, 3, 1, 2, 1, 4, 0, 4, 0, 2, 1, 3, 0, 4, 1, 3, 1, 4, 0, 5, 1, 4, 0, 3, 0, 5, 1, 3, 0, 4, 0, 6, 1, 3, 1, 5, 0, 6, 0, 2, 1, 5, 0, 6, 1, 5, 1, 5, 0, 7, 0, 4, 1, 5, 0, 8, 1, 5, 0, 4, 0, 9, 1, 4, 0, 5, 0, 7, 0, 3, 1, 6, 0, 8, 1, 5, 1
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Comments

For an odd number n, a(n) = 0 if n-2 is not a prime, otherwise a(n) = 1.
For n > 1, a(2n) is at least 1, according to Goldbach's conjecture.
a(A014092(n)) = 0; a(A014091(n)) > 0; a(A067187(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
Number of partitions of n into two primes.
Number of unordered ways of writing n as the sum of two primes.
a(2*n) = A068307(2*n+2). - Reinhard Zumkeller, Aug 08 2009
4*a(n) is the total number of divisors of all primes p and q such that n = p+q and p >= q. - Wesley Ivan Hurt, Mar 05 2016
Indices where a(n) = 0 correspond to A164376 UNION A025584. - Bill McEachen, Jan 31 2024

Examples

			a(22) = 3 because 22 can be written as 3+19, 5+17 and 11+11.
		

Crossrefs

Programs

  • Magma
    [#RestrictedPartitions(n,2,{p:p in PrimesUpTo(1000)}):n in [0..100] ] // Marius A. Burtea, Jan 19 2019
  • Maple
    g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..30): gser:=series(g,x=0,110): seq(coeff(gser,x,n),n=0..105); # Emeric Deutsch, Apr 03 2006
  • Mathematica
    a[n_] := Length[Select[n - Prime[Range[PrimePi[n/2]]], PrimeQ]]; Table[a[n], {n, 0, 100}] (* Paul Abbott, Jan 11 2005 *)
    With[{nn=110},CoefficientList[Series[Sum[x^(Prime[i]+Prime[j]),{j,nn},{i,j}],{x,0,nn}],x]] (* Harvey P. Dale, Aug 17 2017 *)
    Table[Count[IntegerPartitions[n,{2}],?(AllTrue[#,PrimeQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jul 03 2021 *)
  • PARI
    a(n)=my(s);forprime(q=2,n\2,s+=isprime(n-q));s \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from sympy import primerange, isprime, floor
    def a(n):
        s=0
        for q in primerange(2, n//2 + 1): s+=isprime(n - q)
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 30 2017
    

Formula

G.f.: Sum_{j>0} Sum_{i=1..j} x^(p(i)+p(j)), where p(k) is the k-th prime. - Emeric Deutsch, Apr 03 2006
A065577(n) = a(10^n).
From Wesley Ivan Hurt, Jan 04 2013: (Start)
a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A010051(n-i).
a(n) = Sum_{i=1..floor(n/2)} floor((A010051(i) + A010051(n-i))/2). (End)
a(n) + A062610(n) + A062602(n) = A004526(n). - R. J. Mathar, Sep 10 2021
a(n) = Sum_{k=floor((n-1)^2/4)+1..floor(n^2/4)} c(A339399(2k-1)) * c(A339399(2k)), where c = A010051. - Wesley Ivan Hurt, Jan 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
Comments edited by Zak Seidov, May 28 2014