cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061388 Sum of digits = 5 times number of digits.

Original entry on oeis.org

5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 159, 168, 177, 186, 195, 249, 258, 267, 276, 285, 294, 339, 348, 357, 366, 375, 384, 393, 429, 438, 447, 456, 465, 474, 483, 492, 519, 528, 537, 546, 555, 564, 573, 582, 591, 609, 618, 627, 636, 645, 654, 663, 672, 681
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			186 is a term as the arithmetic mean of the digits is (1+8+6)/3 = 5.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..700] | &+Intseq(n) eq 5*#Intseq(n) ];  // Bruno Berselli, Jun 30 2011
  • Mathematica
    Select[Range[685],Total[x=IntegerDigits[#]]==5*Length[x] &]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A061423 Sum of digits = 6 times number of digits.

Original entry on oeis.org

6, 39, 48, 57, 66, 75, 84, 93, 189, 198, 279, 288, 297, 369, 378, 387, 396, 459, 468, 477, 486, 495, 549, 558, 567, 576, 585, 594, 639, 648, 657, 666, 675, 684, 693, 729, 738, 747, 756, 765, 774, 783, 792, 819, 828, 837, 846, 855, 864, 873, 882, 891, 909
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			288 is a term as the arithmetic mean of the digits is (2+8+8)/3 = 6.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | &+Intseq(n) eq 6*#Intseq(n)]; // Vincenzo Librandi, Jan 28 2016
  • Maple
    F:= proc(m,s)
    option remember;
    # list of all m-digit numbers with sum of digits s
    if s > 9*m or s < 0 then return [] fi;
    if m = 1 then return [s] fi;
    [seq(seq(op(map(`+`,procname(j,s-i),10^(m-1)*i)),j=1..m-1),i=1..min(9,s))]
    end proc:
    seq(op(F(m,6*m)),m=1..3); # Robert Israel, Jan 27 2016
  • Mathematica
    Select[Range[1000],Total[IntegerDigits[#]]==6*IntegerLength[#]&] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    isok(n) = {digs = digits(n, 10); return(6*#digs == sum(k=1, #digs, digs[k]));} \\ Michel Marcus, Jul 31 2013
    

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A061387 Sum of digits = 4 times number of digits.

Original entry on oeis.org

4, 17, 26, 35, 44, 53, 62, 71, 80, 129, 138, 147, 156, 165, 174, 183, 192, 219, 228, 237, 246, 255, 264, 273, 282, 291, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 408, 417, 426, 435, 444, 453, 462, 471, 480, 507, 516, 525, 534, 543, 552, 561, 570, 606
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			147 is a term as the arithmetic mean of the digits is (1+4+7)/3 = 4.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..610] | &+Intseq(n) eq 4*#Intseq(n) ];  // Bruno Berselli, Jun 30 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A285096 Primes with integer arithmetic mean of digits = 2 in base 10.

Original entry on oeis.org

2, 13, 31, 1061, 1151, 1223, 1511, 1601, 2141, 2213, 2411, 3023, 3041, 3203, 3221, 4013, 4211, 5003, 5021, 6011, 6101, 7001, 10009, 10243, 10333, 10513, 10531, 10711, 11071, 11161, 11251, 11503, 11701, 12007, 12043, 12241, 12421, 12511, 12601, 13033, 13411
Offset: 1

Views

Author

Jaroslav Krizek, Apr 16 2017

Keywords

Crossrefs

Primes in A061385. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), this sequence (k = 2), A285225 (k = 4), A285226 (k = 5), A285227 (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 2];
  • Maple
    S:= proc(d,k,flag) option remember;
      if d = 1 then
        if k >= 0 and k <= 9 then return [k]
        else return []
        fi
      fi;
      [seq(op(map(`+`, procname(d-1,k-i,0), i*10^(d-1))),i=flag..min(k,9))]
    end proc:
    seq(op(select(isprime,S(d,2*d,1))),d=1..5);# Robert Israel, Apr 23 2017
  • Mathematica
    Select[Prime[Range[1600]],Mean[IntegerDigits[#]]==2&] (* Harvey P. Dale, Aug 07 2021 *)

A285093 Corresponding values of arithmetic means of digits of numbers from A061383.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061383 (numbers with integer arithmetic mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 1 - 9: A061384 (k = 1), A061385 (k = 2), A061386 (k = 3), A061387 (k = 4), A061388 (k = 5), A061423 (k = 6), A061424 (k = 7), A061425 (k = 8), A002283 (k = 9).
Cf. A004426, A004427, A257295 (supersequences).

Programs

  • Magma
    [0] cat [&+Intseq(n) / #Intseq(n): n in [1..100000] | &+Intseq(n) mod #Intseq(n) eq 0];
    
  • PARI
    lista(nn) = {for (n=0, nn, if (n, d = digits(n), d = [0]); if (!( vecsum(d) % #d), print1(vecsum(d)/#d, ", ")););} \\ Michel Marcus, Apr 15 2017

Formula

a(n) = A007953(A061383(n)) / A055642(A061383(n)) for n >= 1.

A316482 Squares whose arithmetic mean of digits is 2 (i.e., the sum of digits is twice the number of digits).

Original entry on oeis.org

21025, 23104, 32041, 36100, 63001, 10125124, 10176100, 10233601, 10530025, 10824100, 11122225, 11303044, 11424400, 12040900, 12103441, 12222016, 12602500, 13315201, 13322500, 14055001, 14600041, 16008001, 16080100, 16810000, 20205025, 20214016, 20611600
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 04 2018

Keywords

Comments

Each term's number of digits is in A174438 (Numbers that are congruent to {0, 2, 5, 8} mod 9). For every positive term k in A174438, this sequence contains at least one k-digit term, with the exception of k=2. (See A316480.)

Examples

			145^2 = 21025, a 5-digit number whose digit sum is 2+1+0+2+5 = 10 = 2*5, so 21025 is a term.
		

Crossrefs

Intersection of A000290 and A061385. - Michel Marcus, Jul 06 2018
Showing 1-6 of 6 results.