cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A061388 Sum of digits = 5 times number of digits.

Original entry on oeis.org

5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 159, 168, 177, 186, 195, 249, 258, 267, 276, 285, 294, 339, 348, 357, 366, 375, 384, 393, 429, 438, 447, 456, 465, 474, 483, 492, 519, 528, 537, 546, 555, 564, 573, 582, 591, 609, 618, 627, 636, 645, 654, 663, 672, 681
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			186 is a term as the arithmetic mean of the digits is (1+8+6)/3 = 5.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..700] | &+Intseq(n) eq 5*#Intseq(n) ];  // Bruno Berselli, Jun 30 2011
  • Mathematica
    Select[Range[685],Total[x=IntegerDigits[#]]==5*Length[x] &]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A061423 Sum of digits = 6 times number of digits.

Original entry on oeis.org

6, 39, 48, 57, 66, 75, 84, 93, 189, 198, 279, 288, 297, 369, 378, 387, 396, 459, 468, 477, 486, 495, 549, 558, 567, 576, 585, 594, 639, 648, 657, 666, 675, 684, 693, 729, 738, 747, 756, 765, 774, 783, 792, 819, 828, 837, 846, 855, 864, 873, 882, 891, 909
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			288 is a term as the arithmetic mean of the digits is (2+8+8)/3 = 6.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | &+Intseq(n) eq 6*#Intseq(n)]; // Vincenzo Librandi, Jan 28 2016
  • Maple
    F:= proc(m,s)
    option remember;
    # list of all m-digit numbers with sum of digits s
    if s > 9*m or s < 0 then return [] fi;
    if m = 1 then return [s] fi;
    [seq(seq(op(map(`+`,procname(j,s-i),10^(m-1)*i)),j=1..m-1),i=1..min(9,s))]
    end proc:
    seq(op(F(m,6*m)),m=1..3); # Robert Israel, Jan 27 2016
  • Mathematica
    Select[Range[1000],Total[IntegerDigits[#]]==6*IntegerLength[#]&] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    isok(n) = {digs = digits(n, 10); return(6*#digs == sum(k=1, #digs, digs[k]));} \\ Michel Marcus, Jul 31 2013
    

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A061385 Numbers n such that sum of digits = twice number of digits.

Original entry on oeis.org

2, 13, 22, 31, 40, 105, 114, 123, 132, 141, 150, 204, 213, 222, 231, 240, 303, 312, 321, 330, 402, 411, 420, 501, 510, 600, 1007, 1016, 1025, 1034, 1043, 1052, 1061, 1070, 1106, 1115, 1124, 1133, 1142, 1151, 1160, 1205, 1214, 1223, 1232, 1241, 1250, 1304
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			141 is a term as the arithmetic mean of the digits is (1+4+1)/3 = 2.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..1310] | &+Intseq(n) eq 2*#Intseq(n) ];  // Bruno Berselli, Jun 30 2011
  • Maple
    S:= proc(d,k,flag) option remember;
      if d = 1 then
        if k >= 0 and k <= 9 then return [k]
        else return []
        fi
      fi;
      [seq(op(map(`+`, procname(d-1,k-i,0), i*10^(d-1))),i=flag..min(k,9))]
    end proc:
    seq(op(S(d,2*d,1)),d=1..5); # Robert Israel, Apr 23 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A285225 Primes with integer arithmetic mean of digits = 4 in base 10.

Original entry on oeis.org

17, 53, 71, 1069, 1087, 1249, 1429, 1447, 1483, 1609, 1627, 1663, 1753, 1861, 1933, 1951, 2239, 2293, 2347, 2383, 2437, 2473, 2617, 2671, 2707, 2833, 2851, 3049, 3067, 3229, 3319, 3373, 3391, 3463, 3517, 3571, 3607, 3643, 3733, 3823, 3931, 4057, 4093, 4129
Offset: 1

Views

Author

Jaroslav Krizek, Apr 16 2017

Keywords

Crossrefs

Primes in A061387. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), A285096 (k = 2), this sequence (k = 4), A285226 (k = 5), A285227 (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 4];
  • Mathematica
    Select[Prime[Range[600]],Mean[IntegerDigits[#]]==4&] (* Harvey P. Dale, Jun 11 2024 *)

A268620 Numbers whose digital sum is a multiple of 4.

Original entry on oeis.org

0, 4, 8, 13, 17, 22, 26, 31, 35, 39, 40, 44, 48, 53, 57, 62, 66, 71, 75, 79, 80, 84, 88, 93, 97, 103, 107, 112, 116, 121, 125, 129, 130, 134, 138, 143, 147, 152, 156, 161, 165, 169, 170, 174, 178, 183, 187, 192, 196, 202, 206, 211, 215, 219, 220, 224, 228, 233, 237, 242, 246
Offset: 1

Views

Author

Bruno Berselli, Feb 09 2016

Keywords

Comments

a(1498) = 5999 is the smallest term that is congruent to 5 modulo 9.

Crossrefs

Cf. A007953, A061383 (supersequence).
Cf. numbers whose digital sum is a multiple of k: A054683 (k=2), A008585 (k=3), this sequence (k=4), A227793 (k=5).

Programs

  • Magma
    [n: n in [0..250] | IsIntegral(&+Intseq(n)/4)];
  • Maple
    select(t -> convert(convert(t,base,10),`+`) mod 4 = 0, [$1..1000]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[Range[0, 250], IntegerQ[Total[IntegerDigits[#]]/4] &]

A285093 Corresponding values of arithmetic means of digits of numbers from A061383.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061383 (numbers with integer arithmetic mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 1 - 9: A061384 (k = 1), A061385 (k = 2), A061386 (k = 3), A061387 (k = 4), A061388 (k = 5), A061423 (k = 6), A061424 (k = 7), A061425 (k = 8), A002283 (k = 9).
Cf. A004426, A004427, A257295 (supersequences).

Programs

  • Magma
    [0] cat [&+Intseq(n) / #Intseq(n): n in [1..100000] | &+Intseq(n) mod #Intseq(n) eq 0];
    
  • PARI
    lista(nn) = {for (n=0, nn, if (n, d = digits(n), d = [0]); if (!( vecsum(d) % #d), print1(vecsum(d)/#d, ", ")););} \\ Michel Marcus, Apr 15 2017

Formula

a(n) = A007953(A061383(n)) / A055642(A061383(n)) for n >= 1.

A316561 Squarefree numbers whose arithmetic mean of digits is 4.

Original entry on oeis.org

17, 26, 35, 53, 62, 71, 129, 138, 165, 174, 183, 219, 237, 246, 255, 273, 282, 291, 309, 318, 327, 345, 354, 381, 390, 417, 426, 435, 453, 462, 471, 534, 543, 561, 570, 606, 615, 633, 642, 651, 705, 714, 723, 741, 813, 822, 831, 903, 921, 930, 1069, 1087, 1159
Offset: 1

Views

Author

K. D. Bajpai, Jul 06 2018

Keywords

Examples

			26 = 2*13 is a 2-digit squarefree number whose arithmetic mean of digits is (2 + 6)/2 = 4. Hence, 26 is a term.
165 = 3 * 5 * 11 is a 3-digit squarefree number whose arithmetic mean of digits is (1 + 6 + 5)/3 = 4. Hence, 165 is a term.
		

Crossrefs

Intersection of A005117 (squarefree numbers) and A061387.
Cf. A316484.

Programs

  • Magma
    [k:k in [4..1200]| IsSquarefree(k) and &+Intseq(k) eq 4*#Intseq(k)]; // Marius A. Burtea, Dec 19 2019
  • Maple
    filter:= proc(n) local L;
      if not numtheory:-issqrfree(n) then return false fi;
      L:= convert(n,base,10);
      convert(L,`+`)=4*nops(L)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 06 2018
  • Mathematica
    Select[Range[5000], Mean[IntegerDigits[#]] == 4 && SquareFreeQ[#] &]
Showing 1-7 of 7 results.