A061467 Remainder when the larger of n and its reverse is divided by the smaller.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 13, 6, 13, 3, 9, 15, 0, 9, 0, 9, 18, 2, 10, 18, 26, 5, 0, 5, 9, 0, 9, 18, 27, 36, 7, 15, 0, 13, 18, 9, 0, 9, 18, 27, 36, 45, 0, 6, 2, 18, 9, 0, 9, 18, 27, 36, 0, 13, 10, 27, 18, 9, 0, 9, 18, 27, 0, 3, 18, 36, 27, 18, 9, 0, 9, 18, 0, 9, 26, 7, 36, 27
Offset: 0
Examples
a(12)=9 since 21/12 = 1 with remainder 9.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a061467 0 = 0 a061467 n = mod (max n n') (min n n') where n' = a004086 n -- Reinhard Zumkeller, Dec 31 2013
-
Mathematica
l := {} For[i = 1, i < 100, i++, x := FromDigits[Reverse[IntegerDigits[i]]]; If[x >= i, AppendTo[l, Mod[x, i]], AppendTo[l, Mod[i, x]]]] l (* Jake Foster, Jun 05 2008 *) rln[n_]:=Module[{r=IntegerReverse[n]},If[r>n,Mod[r,n],Mod[n,r]]]; Join[ {0}, Array[rln,90]] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2016 *)
-
PARI
{ for (n=0, 1000, x=n; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); p=max(n, r); q=min(n, r); write("b061467.txt", n, " ", p%q) ) } \\ Harry J. Smith, Jul 23 2009
Comments