cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061704 Number of cubes dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Examples

			a(128) = 3 since 128 is divisible by 1^3 = 1, 2^3 = 8 and 4^3 = 64.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1)..a(N)
    G:= add(x^(n^3)/(1-x^(n^3)),n=1..floor(N^(1/3))):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Jul 28 2017
    # alternative
    A061704 := proc(n)
        local a,pe ;
        a := 1 ;
        for pe in ifactors(n)[2] do
            op(2,pe) ;
            a := a*(1+floor(%/3)) ;
        end do:
        a ;
    end proc:
    seq(A061704(n),n=1..80) ; # R. J. Mathar, May 10 2023
  • Mathematica
    nn = 100; f[list_, i_]:= list[[i]]; Table[ DirichletConvolve[ f[ Boole[ Map[ IntegerQ[#] &, Map[#^(1/3) &, Range[nn]]]], n],f[Table[1, {nn}], n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 07 2015 *)
    Table[DivisorSum[n, 1 &, IntegerQ[#^(1/3)] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := 1 + Floor[e/3]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, ispower(d, 3)); \\ Michel Marcus, Jan 31 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A061704(n): return prod(e//3+1 for e in factorint(n).values()) # Chai Wah Wu, Jun 05 2025

Formula

Multiplicative with a(p^e) = floor(e/3) + 1. - Mitch Harris, Apr 19 2005
G.f.: Sum_{n>=1} x^(n^3)/(1-x^(n^3)). - Joerg Arndt, Jan 30 2011
a(n) = A000005(A053150(n)).
Dirichlet g.f.: zeta(3*s)*zeta(s). - Geoffrey Critzer, Feb 07 2015
Sum_{k=1..n} a(k) ~ zeta(3)*n + zeta(1/3)*n^(1/3). - Vaclav Kotesovec, Dec 01 2020
a(n) = Sum_{k=1..n} (1 - ceiling(n/k^3) + floor(n/k^3)). - Wesley Ivan Hurt, Jan 28 2021