A061718 a(n) = (n*(n+1)/2)^n.
1, 9, 216, 10000, 759375, 85766121, 13492928512, 2821109907456, 756680642578125, 253295162119140625, 103510234140112521216, 50714860157241037295616, 29345269354638035222576971
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A066300.
Programs
-
Maple
a:=n->mul(sum(j, j=0..n),k=1..n): seq(a(n), n=1..13); # Zerinvary Lajos, Jun 02 2007 a:=n->mul(binomial(n+2,2), k=0..n): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 02 2007
-
Mathematica
Table[((n(n+1))/2)^n,{n,20}] (* Harvey P. Dale, Dec 09 2022 *) With[{nn=15},#[[1]]^#[[2]]&/@Thread[{Accumulate[Range[nn]],Range[nn]}]] (* Harvey P. Dale, Dec 25 2023 *)
-
PARI
{ for (n=1, 100, write("b061718.txt", n, " ", (n*(n + 1)/2)^n) ) } \\ Harry J. Smith, Jul 26 2009
Formula
a(n) = Sum_{i=1..n,j=1..n,k=1..n,...} (i*j*k*...). E.g., a(2) = 9 because 1*1 + 1*2 + 2*1 + 2*2 = 9. - Ben Paul Thurston, Aug 15 2006
a(n) = [x^n] 1/(1 - (n*(n + 1)/2)*x). - Ilya Gutkovskiy, Oct 10 2017
a(n) ~ 2^(-n)*exp(1-1/(2*n))*n^(2*n). - Stefano Spezia, Jun 13 2025
Comments