A062116 a(n) = 2^n mod 17.
1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13
Offset: 0
Examples
a(5) = 32 mod 17 = 15.
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,1).
Programs
-
GAP
a:=List([0..70],n->PowerMod(2,n,17));; Print(a); # Muniru A Asiru, Jan 29 2019
-
Magma
[2^n mod 17: n in [0..100]]; // G. C. Greubel, Oct 16 2018
-
Mathematica
Mod[#,17]&/@(2^Range[0,100]) (* Harvey P. Dale, Mar 06 2011 *)
-
PARI
a(n) = { lift(Mod(2,17)^n) } \\ Harry J. Smith, Aug 01 2009
-
Sage
[power_mod(2,n,17) for n in range(0,87)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-4) + a(n-5).
G.f.: (1 + x + 2*x^2 + 4*x^3 + 9*x^4)/((1-x)*(1+x^4)). (End)
a(n) = 17 - a(n+4) = a(n+8) for all n in Z. - Michael Somos, Oct 17 2018
Comments