A062137
Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).
Original entry on oeis.org
1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 4 -1
2: 20 -10 1
3: 120 -90 18 -1
4: 840 -840 252 -28 1
5: 6720 -8400 3360 -560 40 -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021
A143497
Triangle of unsigned 2-Lah numbers.
Original entry on oeis.org
1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2
Triangle begins:
=========================================
n\k | 2 3 4 5 6 7
----+------------------------------------
2 | 1
3 | 4 1
4 | 20 10 1
5 | 120 90 18 1
6 | 840 840 252 28 1
7 | 6720 8400 3360 560 40 1
...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
- Muniru A Asiru, Table of n, a(n) for n = 2..4951 Rows n = 2..100
- A. Z. Broder, The r-Stirling numbers, Report CS-TR-82-949, Stanford University, Department of Computer Science, 1982.
- A. Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
- Gi-Sang Cheon and Ji-Hwan Jung, r-Whitney numbers of Dowling lattices, Discrete Math., 312 (2012), 2337-2348.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul and G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Marko Petkovsek and Tomaz Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, University of Ljubljana, Preprint series, Vol. 40 (2002), 837.
- Jose L. Ramirez and M. Shattuck, A (p, q)-Analogue of the r-Whitney-Lah Numbers, Journal of Integer Sequences, 19, 2016, #16.5.6.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
Cf.
A001715 (column 2),
A007318,
A008275,
A008277,
A061206 (column 3),
A062137,
A062141 -
A062144 ( column 4 to column 7),
A062146 (alt. row sums),
A062147 (row sums),
A105278 (unsigned Lah numbers),
A143491,
A143494,
A143498,
A143499.
-
T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
-
T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
-
T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
-
create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
Showing 1-2 of 2 results.
Comments