cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062157 a(n) = 0^n - (-1)^n.

Original entry on oeis.org

0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

Also the numerators of the series expansion of log(1+x). Denominators are A028310. - Robert G. Wilson v, Aug 14 2015

Examples

			G.f. = x - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + ... - _Michael Somos_, Feb 20 2024
		

Crossrefs

Convolution inverse of A019590.

Programs

  • Magma
    [0^n-(-1)^n: n in [0..100]]; // Vincenzo Librandi, Aug 15 2015
    
  • Magma
    [0] cat &cat[ [1, -1]: n in [1..80] ]; // Vincenzo Librandi, Aug 15 2015
  • Mathematica
    PadRight[{0},120,{-1,1}] (* Harvey P. Dale, Aug 20 2012 *)
    Join[{0},LinearRecurrence[{-1},{1},101]] (* Ray Chandler, Aug 12 2015 *)
    f[n_] := 0^n - (-1)^n; f[0] = 0; Array[f, 105, 0] (* or *)
    CoefficientList[ Series[ x/(1 + x), {x, 0, 80}], x] (* or *)
    Numerator@ CoefficientList[ Series[ Log[1 + x], {x, 0, 80}], x] (* Robert G. Wilson v, Aug 14 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n )}; /* Michael Somos, Jul 05 2009 */
    

Formula

a(n) = A000007(n) - A033999(n) = A062160(0, n).
G.f.: x/(1+x).
Euler transform of length 2 sequence [-1, 1]. - Michael Somos, Jul 05 2009
Moebius transform is length 2 sequence [1, -2]. - Michael Somos, Jul 05 2009
a(n) is multiplicative with a(2^e) = -1 if e > 0, a(p^e) = 1 if p > 2. - Michael Somos, Jul 05 2009
Dirichlet g.f.: zeta(s) * (1 - 2^(1-s)). - Michael Somos, Jul 05 2009
Also, Dirichlet g.f.: eta(s). - Ralf Stephan, Mar 25 2015
E.g.f.: 1 - exp(-x). - Alejandro J. Becerra Jr., Feb 16 2021