cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A019590 Fermat's Last Theorem: a(n) = 1 if x^n + y^n = z^n has a nontrivial solution in integers, otherwise a(n) = 0.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) is the Hankel transform of A000045(n), n>=1 (Fibonacci numbers). See A055879 for the definition of Hankel transform. - Wolfdieter Lang, Jan 23 2007
1, -1, 0, 0, 0, ... is the convolutional inverse of the all-ones sequence. - Tanya Khovanova, Jun 29 2007
Also parity of the Euler totient function A000010. - Omar E. Pol, Jan 15 2012
a(n-1) gives the row sums of A048994. - Wolfdieter Lang, May 09 2017
Decimal expansion of 11/10. - Franklin T. Adams-Watters, Mar 08 2019

References

  • A. D. Aczel, Fermat's Last Theorem, Four Walls Eight Windows NY 1996.
  • A. C. Clarke, The Last Theorem, Gollancz SF 2004.
  • B. Cipra, What's Happening in the Mathematical Sciences 1994 Vol. 2, "A Truly Remarkable Proof" pp. 3-8 AMS Providence RI.
  • B. Cipra, What's Happening in the Mathematical Sciences 1995-6 Vol. 3, 'Fermat's Theorem-At Last' pp. 2-13 AMS Providence RI.
  • J. Coates and S.-T. Yau (Eds), Elliptic Curves, Modular Forms and Fermat's last Theorem, International Press Boston MA 1998.
  • G. Cornell, J. H. Silverman and G. Stevens (Eds), Modular Forms and Fermat's last Theorem, Springer NY 2000.
  • K. J. Devlin, Mathematics: The New Golden Age, Chapter 10, Columbia Univ. Press NY 1999.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 731.
  • H. M. Edwards, Fermat's Last Theorem, Springer, 1977.
  • G. Giorello & C. Sinigaglia, "Fermat: De défis en conjectures", Les génies de la science No. 32 Aug-Oct 2007, pp. 82-100, Pour la Science, Paris.
  • C. Goldstein, "Le Théorème de Fermat", La Recherche, Vol. Mar 25 1994, pp. 268-275, Paris.
  • C. Goldstein, "Le Théorème de Fermat enfin démontré", Chapter IX pp. 111-129 in 'Histoire Des Nombres', La Recherche, Tallandier, Paris 2007.
  • Y. Hellegouarch, "Fermat Vaincu", Quadrature No. 22 pp. 37-55 Editions du choix Argenteuil (France) 1995.
  • Y. Hellegouarch, "Fermat enfin démontré", Pour la Science, No. 220, 1996 pp. 92-97 Paris.
  • Y. Hellegouarch, Invitation aux mathématiques de Fermat-Wiles, Dunod Paris 2001.
  • Y. Hellegouarch, "L'Enigme du Theoreme de Fermat" pp. 31-41 in 'Qu'est-ce que l'Univers?", Université de tous les savoirs, Vol. 4 (Edit. Y. Michaud), Odile Jacob Paris 2001.
  • Y. Hellegouarch, Invitation to the Mathematics of Fermat-Wiles, Academic Press NY 2001.
  • P. Hoffman, The Man Who Loved Only Numbers, pp. 183-200, Hyperion NY 1998
  • W. Lindsay, Fermat's Last Theorem, A Perfect Proof, Lulu Press, Morrisville NC 2005.
  • L. J. Mordell, Three lectures on Fermat's last theorem, Cambr. Univ. Press 1921 (Reprinted by The Scholarly Pub. Office, Univ. of Michigan Library 2005).
  • C. J. Mozzochi, The Fermat Diary, AMS Providence RI 2000.
  • C. J. Mozzochi, The Fermat Proof, New Bern NC 2004.
  • V. K. Murty, Seminar on Fermat's Last Theorem, Amer. Math. Soc. Providence RI 1995.
  • P. Odifreddi, The Mathematical Century, Chapter 2.14 "Number Theory: Wiles' Proof of Fermat's Last Theorem (1995)" p. 82 Princeton Univ. Press NJ 2004.
  • I. Peterson, The Mathematical Tourist, pp. 234-238, W. H. Freeman/Owl Book NY 2001.
  • I. Peterson, "A Marginal Note" in Islands of Truths, pp. 280-285, W. H. Freeman NY 1990.
  • A. van der Poorten, Notes on Fermat's Last Theorem, Wiley NY 1996
  • J. Propp, Who Proved Fermat's Last Theorem? Princeton Univ. Press NJ 2005.
  • P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979.
  • P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer Verlag NY 1999.
  • R. Schoof, "Wiles' proof of the Taniyama-Weil conjecture for semi-stable elliptic curves over Q", Chap. 14 in 'Ou En Sont Les Mathématiques ?' Soc. Math. de France (SMF), Vuibert, Paris 2002.
  • S. Singh, Fermat's Enigma, Walker and Co. NY 1997.
  • I. Stewart, From Here To Infinity, Chapter 3 "Marginal Interest" pp. 25-48 OUP Oxford 1996.
  • I. Stewart and D. Tall, Algebraic Number Theory and Fermat's Last Theorem, A. K. Peters Natick MA 2001.
  • G. R. Talbott, Fermat's Last Theorem, Lotus Press WI 1991.
  • R. Van Vo, Fermat's Last Theorem, AuthorHouse, Bloomington IN 2002.
  • J. Vigouroux et al., Une aventure mathématique, le théorème de Fermat, BT2 series No. 6, PEMF Mouans-Sartoux(France) 1998.

Crossrefs

INVERT transform gives Fibonacci numbers, A000045.
Convolution inverse of A062157. Dirichlet convolution inverse of A154269.
Cf. A229382, A229383 (near-miss counterexamples to FLT).
Cf. A048994 (row sums).
Cf. A008683.

Programs

  • PARI
    {a(n) = (n==1) + (n==2)}; /* Michael Somos, Jul 05 2009 */

Formula

a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^A010060(n-2k) mod (C(n, 2k), 2). - Paul Barry, Jan 03 2005
Euler transform of length 2 sequence [1, -1]. - Michael Somos, Jul 05 2009
a(n) is multiplicative with a(2) = 1, a(2^e) = 0 if e > 1, a(p^e) = 0^e if p > 2. - Michael Somos, Jul 05 2009
G.f.: x + x^2 = x * (1 - x^2) / (1 - x). - Michael Somos, Jul 05 2009
Dirichlet g.f.: 1 + 2^(-s). - Michael Somos, Jul 05 2009
a(n) = A000035(A000010(n)). - Omar E. Pol, Oct 28 2013
a(n) = Sum_{d|n} mu(n/d) * gcd(d,2). - Ridouane Oudra, May 30 2025

A028310 Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Keywords

Comments

1 followed by the natural numbers.
Molien series for ring of Hamming weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).
Engel expansion of e (see A006784 for definition) [when offset by 1]. - Henry Bottomley, Dec 18 2000
Also the denominators of the series expansion of log(1+x). Numerators are A062157. - Robert G. Wilson v, Aug 14 2015
The right-shifted sequence (with a(0)=0) is an autosequence (of the first kind - see definition in links). - Jean-François Alcover, Mar 14 2017

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9  + ...
		

Crossrefs

Cf. A000007, A000027, A000660 (boustrophedon transform).

Programs

  • Haskell
    a028310 n = 0 ^ n + n
    a028310_list = 1 : [1..]  -- Reinhard Zumkeller, Nov 06 2012
    
  • Magma
    [n eq 0 select 1 else n: n in [0..75]]; // G. C. Greubel, Jan 05 2024
    
  • Maple
    a:= n-> `if`(n=0, 1, n):
    seq(a(n), n=0..60);
  • Mathematica
    Denominator@ CoefficientList[Series[Log[1+x], {x,0,75}], x] (* or *)
    CoefficientList[ Series[(1 -x +x^2)/(1-x)^2, {x,0,75}], x] (* Robert G. Wilson v, Aug 14 2015 *)
    Join[{1}, Range[75]] (* G. C. Greubel, Jan 05 2024 *)
    LinearRecurrence[{2,-1},{1,1,2},80] (* Harvey P. Dale, Jan 29 2025 *)
  • PARI
    {a(n) = (n==0) + max(n, 0)} /* Michael Somos, Feb 02 2004 */
    
  • PARI
    A028310(n)=n+!n  \\ M. F. Hasler, Jan 16 2012
    
  • Python
    def A028310(n): return n|bool(n)^1 # Chai Wah Wu, Jul 13 2023
    
  • SageMath
    [n + int(n==0) for n in range(76)] # G. C. Greubel, Jan 05 2024

Formula

Binomial transform is A005183. - Paul Barry, Jul 21 2003
G.f.: (1 - x + x^2) / (1 - x)^2 = (1 - x^6) /((1 - x) * (1 - x^2) * (1 - x^3)) = (1 + x^3) / ((1 - x) * (1 - x^2)). a(0) = 1, a(n) = n if n>0.
Euler transform of length 6 sequence [ 1, 1, 1, 0, 0, -1]. - Michael Somos Jul 30 2006
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Apr 05 2012
G.f. of A112934(x) = 1 / (1 - a(0)*x / (1 - a(1)*x / ...)). - Michael Somos, Apr 05 2012
a(n) = A000027(n) unless n=0.
a(n) = Sum_{k=0..n} A123110(n,k). - Philippe Deléham, Oct 06 2009
E.g.f: 1+x*exp(x). - Wolfdieter Lang, May 03 2010
a(n) = sqrt(floor[A204503(n+3)/9]). - M. F. Hasler, Jan 16 2012
E.g.f.: 1-x + x*E(0), where E(k) = 2 + x/(2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = A001477(n) + A000007(n). - Miko Labalan, Dec 12 2015 (See the first comment.)

A067856 Sum_{n >= 1} a(n)/n^s = 1/(Sum_{n >= 1} (-1)^(n + 1)/n^s).

Original entry on oeis.org

1, 1, -1, 2, -1, -1, -1, 4, 0, -1, -1, -2, -1, -1, 1, 8, -1, 0, -1, -2, 1, -1, -1, -4, 0, -1, 0, -2, -1, 1, -1, 16, 1, -1, 1, 0, -1, -1, 1, -4, -1, 1, -1, -2, 0, -1, -1, -8, 0, 0, 1, -2, -1, 0, 1, -4, 1, -1, -1, 2, -1, -1, 0, 32, 1, 1, -1, -2, 1, 1, -1, 0, -1, -1, 0, -2, 1, 1, -1, -8, 0, -1, -1, 2, 1, -1, 1, -4, -1, 0, 1, -2, 1, -1, 1, -16, -1, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 15 2002

Keywords

Comments

Dirichlet inverse of A062157. - R. J. Mathar, Jul 15 2010
The first 31 terms equal the values of the Ramanujan sum c_n(8) -- see for example A085906 -- but a(32) <> c_{32}(8). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 12 2019: (Start)
Let Mu(n) = (-1)^(n+1)*a(n), an analog of the Möbius function mu(n). Then for arithmetic functions f(n) and g(n) we have the following analog of the Möbius inversion formula: f(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*g(d) iff g(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*Mu(n/d)*f(d).
Each of the following two equations implies the other: F(x) = Sum_{n >= 1} (-1)^(n+1)*G(n*x); G(x) = Sum_{n >= 1} a(n)*F(n*x). See G. Pólya and G. Szegő, Part V111, Chap. 1, Nos. 66-68.2. (End)
Let D(n) denote the set of partitions of n into distinct parts. Then Sum_{parts k in D(n)} a(k) = |D(n-1)| = A000009(n-1). For example, D(6) = {6, 1 + 5, 2 + 4, 1 + 2 + 3} and the sum a(6) + (a(1) + a(5)) + (a(2) + a(4)) + (a(1) + a(2) + a(3)) = 3 = |D(5)|. - Peter Bala, Mar 14 2019
From Petros Hadjicostas, Jul 25 2020: (Start)
For p prime >= 2, Petrogradsky (2003) defined the multiplicative functions 1_p and mu_p in the following way:
1_p(n) = 1 when gcd(n,p) = 1 and 1_p(n) = 1 - p when gcd(n,p) = p;
mu_p(n) = mu(n) when gcd(n,p) = 1 and mu_p(n) = mu(m)*(p^s - p^(s-1)) when n = m*p^s with gcd(m,p) = 1 and s >= 1.
We have 1_2(n) = A062157(n), 1_3(n) = A061347(n) (with offset 1), a(n) = mu_2(n), and A117997(n) = mu_3(n) for n >= 1.
Some of the results by other contributors can be generalized:
(i) Rogel's (1897) formula becomes Sum_{d | n} 1_p(d) * mu_p(n/d) = 0 for n > 1. Thus, 1_p is the Dirichlet inverse of mu_p.
(ii) R. J. Mathar's Dirichlet g.f. for mu_p becomes 1/(zeta(s) * (1 - p^(1-s))). The Dirichlet g.f. for 1_p is zeta(s) * (1 - p^(1-s)).
(iii) Benoit Cloitre's formula becomes 1 = Sum_{k=1..n} mu_p(k)*g_p(n/k), where g_p(x) = floor(x) - p*floor(x/p) = floor(x) mod p.
(iv) Paul D. Hanna's formula becomes Sum_{n >= 1} (mu_p(n)/n)*log((1 - x^(n*p))/(1 - x^n)) = x.
(v) The definition of A117997 generalizes to Sum_{d | n} mu_p(d) = n, if n = p^s for s >= 0, and = 0, otherwise.
(vi) By differentiating both sides of (iv) w.r.t. x and multiplying both sides by x, we get Sum_{n >= 1} mu_p(n)*(x^n + 2*x^(2*n) + ... + (p-1)*x^(n*(p-1)))/(1 + x^n + x^(2*n) + ... + x^(n*(p-1))) = x, which generalizes one of Peter Bala's formulas. It can be thought as a "generalized Lambert series".
(vii) Obviously, f(n) = Sum_{d | n} 1_p(n/d)*g(d) if and only if g(n) = Sum_{d | n} mu_p(n/d)*f(d). (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.

Crossrefs

Cf. A000009, A038712, A038838, A048298 (inverse Mobius transform), A061347, A062157, A085906, A117997, A321088 (Euler transform), A321558.

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {a(n)=local(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1))} /* Michael Somos, Aug 22 2006 */
    
  • PARI
    A067856(n) =  { my(f=factor(n)); for(i=1,#f~,if(2==f[i,1],f[i,2]--,if(f[i,2]>1,f[i,1]=0,f[i,1]=-1))); factorback(f); }; \\ Antti Karttunen, Sep 27 2018, after Vladeta Jovovic_'s multiplicative formula.

Formula

a(1) = 1 and a(n) = Sum{k | n, 1 < k} (-1)^k a(n/k) for n >= 2; the sum is over the divisors, k, of n, where k > 1. If n is odd, a(n) = mu(n), where mu(.) is the Moebius function. If n is even, a(n) = mu(m)* 2^(k-1), where n = m*2^k, m is odd integer, and k is a positive integer.
Sum_{n > 0} a(n)*x^n/(1 + x^n) = x. Moebius transform of A048298. Multiplicative with a(2^e) = 2^(e - 1), a(p) = -1 for p > 2, a(p^e) = 0 for p > 2 and e > 1. - Vladeta Jovovic, Jan 02 2003
Sum_{n > 0} a(n)*log(1 + x^n)/n = x. - Paul D. Hanna, May 06 2003
a(n) = 0 if and only if n is divisible by the square of an odd prime (A038838). - Michael Somos, Aug 22 2006
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 2*floor(x/2). - Benoit Cloitre, Nov 11 2010
Dirichlet g.f.: 1/( zeta(s) * (1 - 2^(1-s)) ). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 13 2019: (Start)
Sum_{n >= 1} a(n)*x^n/(1 + x^n) = x
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 2*x^2 + 4*x^4 + 8*x^8 + 16*x^16 + ...
Sum_{n >= 1} a(n)*x^n/(1 + (-x)^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...)
Sum_{n >= 1} a(n)*x^n/(1 - (-x)^n) = x + 2*(x^4 + 3*x^8 + 7*x^16 + 15*x^32 + ...). (End)
G.f. A(x) satisfies: A(x) = x + A(x^2) - A(x^3) + A(x^4) - A(x^5) + ... - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 2*n*(log(n) - 1 + gamma + 11*log(2)/6 - 12*zeta'(2)/Pi^2) / (log(2)*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 30 2024

A284900 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^4.

Original entry on oeis.org

1, 15, 82, 239, 626, 1230, 2402, 3823, 6643, 9390, 14642, 19598, 28562, 36030, 51332, 61167, 83522, 99645, 130322, 149614, 196964, 219630, 279842, 313486, 391251, 428430, 538084, 574078, 707282, 769980, 923522, 978671, 1200644, 1252830, 1503652, 1587677
Offset: 1

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000583 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), this sequence (k=4), A284926 (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^4, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 05 2017 *)
    f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); f[2, e_] := (7*2^(4*e + 1) + 1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^4); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**4 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{k>=1} k^4*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (7*2^(4*e+1)+1)/15, and a(p^e) = (p^(4*e+4) - 1)/(p^4 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 3*zeta(5)/16 = 0.194423... . (End)

A284926 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^5.

Original entry on oeis.org

1, 31, 244, 991, 3126, 7564, 16808, 31711, 59293, 96906, 161052, 241804, 371294, 521048, 762744, 1014751, 1419858, 1838083, 2476100, 3097866, 4101152, 4992612, 6436344, 7737484, 9768751, 11510114, 14408200, 16656728, 20511150, 23645064, 28629152, 32472031, 39296688
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000584 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), this sequence (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^5, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := (15*2^(5*e + 1) + 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^5); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**5 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^5*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (15*2^(5*e+1)+1)/31, and a(p^e) = (p^(5*e+5) - 1)/(p^5 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 31*zeta(6)/192 = 0.164258... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A360099 To get A(n,k), replace 0's in the binary expansion of n with (-1) and interpret the result in base k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, -1, 0, 1, 0, 1, 0, 1, 1, 2, -1, 0, 1, 2, 3, -1, 1, 0, 1, 3, 4, 1, 1, -1, 0, 1, 4, 5, 5, 3, 1, 1, 0, 1, 5, 6, 11, 7, 5, 3, -1, 0, 1, 6, 7, 19, 13, 11, 7, -2, 1, 0, 1, 7, 8, 29, 21, 19, 13, 1, 0, -1, 0, 1, 8, 9, 41, 31, 29, 21, 14, 3, 0, 1, 0, 1, 9, 10, 55, 43, 41, 31, 43, 16, 5, 2, -1
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2023

Keywords

Comments

The empty bit string is used as binary expansion of 0, so A(0,k) = 0.

Examples

			Square array A(n,k) begins:
   0,  0, 0,  0,  0,   0,   0,   0,   0,   0,   0, ...
   1,  1, 1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  -1,  0, 1,  2,  3,   4,   5,   6,   7,   8,   9, ...
   1,  2, 3,  4,  5,   6,   7,   8,   9,  10,  11, ...
  -1, -1, 1,  5, 11,  19,  29,  41,  55,  71,  89, ...
   1,  1, 3,  7, 13,  21,  31,  43,  57,  73,  91, ...
  -1,  1, 5, 11, 19,  29,  41,  55,  71,  89, 109, ...
   1,  3, 7, 13, 21,  31,  43,  57,  73,  91, 111, ...
  -1, -2, 1, 14, 43,  94, 173, 286, 439, 638, 889, ...
   1,  0, 3, 16, 45,  96, 175, 288, 441, 640, 891, ...
  -1,  0, 5, 20, 51, 104, 185, 300, 455, 656, 909, ...
		

Crossrefs

Columns k=0-6, 10 give: A062157, A145037, A006257, A147991, A147992, A153777, A147993, A359925.
Rows n=0-10 give: A000004, A000012, A023443, A000027(k+1), A165900, A002061, A165900(k+1), A002061(k+1), A083074, A152618, A062158.
Main diagonal gives A360096.

Programs

  • Maple
    A:= proc(n, k) option remember; local m;
         `if`(n=0, 0, k*A(iquo(n, 2, 'm'), k)+2*m-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= (n, k)-> (l-> add((2*l[i]-1)*k^(i-1), i=1..nops(l)))(Bits[Split](n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);

Formula

G.f. for column k satisfies g_k(x) = k*(x+1)*g_k(x^2) + x/(1+x).
A(n,k) = k*A(floor(n/2),k)+2*(n mod 2)-1 for n>0, A(0,k)=0.
A(n,k) mod 2 = A057427(n) if k is even.
A(n,k) mod 2 = A030300(n) if k is odd and n>=1.
A(2^(n+1),1) + n = 0.

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A284927 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^6.

Original entry on oeis.org

1, 63, 730, 4031, 15626, 45990, 117650, 257983, 532171, 984438, 1771562, 2942630, 4826810, 7411950, 11406980, 16510911, 24137570, 33526773, 47045882, 62988406, 85884500, 111608406, 148035890, 188327590, 244156251, 304089030, 387952660, 474247150, 594823322
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A001014 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), A284926 (k=5), this sequence (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^6, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); f[2, e_] := (31*2^(6*e + 1) + 1)/63; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^6); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**6 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (31*2^(6*e+1)+1)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 9*zeta(7)/64 = 0.141799... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A117212 Sum_{d|n} a(d)/d = (-1)^(n-1)/n for n>=1; equals the logarithmic g.f. of A117210.

Original entry on oeis.org

1, -3, -2, 1, -4, 6, -6, 1, -2, 12, -10, -2, -12, 18, 8, 1, -16, 6, -18, -4, 12, 30, -22, -2, -4, 36, -2, -6, -28, -24, -30, 1, 20, 48, 24, -2, -36, 54, 24, -4, -40, -36, -42, -10, 8, 66, -46, -2, -6, 12, 32, -12, -52, 6, 40, -6, 36, 84, -58, 8, -60, 90, 12, 1, 48, -60, -66, -16, 44, -72, -70, -2, -72, 108, 8, -18
Offset: 1

Views

Author

Paul D. Hanna, Mar 03 2006

Keywords

Examples

			For n=6, Sum_{d|6} a(d)/d = a(1)/1 + a(2)/2 + a(3)/3 + a(6)/6 = 1/1 - 3/2 - 2/3 + 6/6 = -1/6.
		

Crossrefs

Programs

  • Mathematica
    nmax = 72; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 + x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006 *)
    f[p_, e_] := 1 - p; f[2, e_] := If[e == 1, -3, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
  • PARI
    a(n)=sumdiv(n,d,d*moebius(d))*[1,3,1,-1][(n-1)%4+1]

Formula

G.f.: Sum_{n>=1} a(n)*x^n/n = log(F(x)), where F(x) is the g.f. of A117210 and satisfies: (1+x) = Product_{n>=1} F(x^n).
a(n) = A023900(n) if n (mod 4) = 1 or 3, a(n) = 3*A023900(n) if n (mod 4) = 2, a(n) = -A023900(n) if n (mod 4) = 0, where A023900 is the Dirichlet inverse of Euler totient function.
From Stuart Clary, Apr 15 2006: (Start)
G.f.: A(x) = sum_{k>=1} mu(k) k x^k/(1 + x^k) where mu(k) is the Möbius function, A008683.
G.f.: A(x) is x times the logarithmic derivative of A117210(x).
G.f.: A(x) = A023900(x) - 2 A023900(x^2).
a(n) = sum_{d|n} (-1)^(n/d - 1) mu(d) d.
(End)
Dirichlet convolution of A055615 and A062157, so the Dirichlet g.f. is the product zeta(s)*(1-2^(1-s))/zeta(s-1). - R. J. Mathar, Feb 07 2011
Multiplicative with a(2) = -3, a(2^e) = 1 for e >= 2, and a(p^e) = 1 - p for an odd prime p. - Amiram Eldar, Aug 31 2023
Showing 1-10 of 17 results. Next