A062199 Second (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre).
1, 12, 126, 1344, 15120, 181440, 2328480, 31933440, 467026560, 7264857600, 119870150400, 2092278988800, 38532804710400, 746943599001600, 15205637551104000, 324386934423552000, 7237883474325504000, 168600109166641152000, 4093235983656787968000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjić, Enumerative Formulas for Some Functions on Finite Sets.
- Index entries for sequences related to Laguerre polynomials.
Programs
-
Magma
[Binomial(n, 5)*Factorial(n-4): n in [5..25]]; // Vincenzo Librandi, Feb 23 2014
-
Mathematica
Table[Sum[n!/5!, {i, 5, n}], {n, 5, 21}] (* Zerinvary Lajos, Jul 12 2009 *) With[{nn=20},CoefficientList[Series[(1+5x)/(1-x)^7,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Nov 10 2016 *)
-
PARI
x='x+O('x^30); Vec(serlaplace((1+5*x)/(1-x)^7)) \\ G. C. Greubel, Feb 07 2018
-
Sage
[binomial(n,5)*factorial (n-4) for n in range(5, 22)] # Zerinvary Lajos, Jul 07 2009
Formula
E.g.f.: (1+5*x)/(1-x)^7.
a(n) = A062140(n+1, 1) = (n+1)!*binomial(n+5, 5).
If we define f(n,i,x)= Sum(Sum(binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j),j=i..k),k=i..n) then a(n-1)=(-1)^(n-1)*f(n,1,-6), (n>=1). [Milan Janjic, Mar 01 2009]
a(n) = Sum_{k>0} k * A264781(n+5,k). - Alois P. Heinz, Nov 24 2015
Assuming offset 1: a(n) = -n!*binomial(-n,5). - Peter Luschny, Apr 29 2016
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 1565/12 - 50*e - 5*gamma + 5*Ei(1), where gamma is Euler's constant (A001620) and Ei(1) is the exponential integral at 1 (A091725).
Sum_{n>=0} (-1)^n/a(n) = -125/12 + 20/e + 5*gamma - 5*Ei(-1), where -Ei(-1) is the negated exponential integral at -1 (A099285). (End)
Extensions
More terms from Vincenzo Librandi, Feb 23 2014
Comments