A062234 From Bertrand's postulate: a(n) = 2*prime(n) - prime(n+1).
1, 1, 3, 3, 9, 9, 15, 15, 17, 27, 25, 33, 39, 39, 41, 47, 57, 55, 63, 69, 67, 75, 77, 81, 93, 99, 99, 105, 105, 99, 123, 125, 135, 129, 147, 145, 151, 159, 161, 167, 177, 171, 189, 189, 195, 187, 199, 219, 225, 225, 227, 237, 231, 245, 251, 257, 267, 265, 273, 279
Offset: 1
References
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001 (first 1000 terms from Harry J. Smith)
Crossrefs
Programs
-
Haskell
a062234 n = a062234_list !! (n-1) a062234_list = zipWith (-) (map (* 2) a000040_list) (tail a000040_list) -- Reinhard Zumkeller, May 31 2015
-
Maple
a:= n-> (p-> 2*p(n)-p(n+1))(ithprime): seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2022
-
Mathematica
Table[2*Prime[n]-Prime[n+1],{n,60}] (* James C. McMahon, Apr 27 2024 *) 2#[[1]]-#[[2]]&/@Partition[Prime[Range[70]],2,1] (* Harvey P. Dale, Jul 29 2024 *) ListConvolve[{-1, 2}, Prime[Range[100]]] (* Paolo Xausa, Nov 02 2024 *)
-
PARI
a(n) = 2*prime(n) - prime(n + 1); \\ Harry J. Smith, Aug 03 2009
Formula
Extensions
Edited by N. J. A. Sloane, Feb 24 2023
Comments