A062249 a(n) = n + d(n), where d(n) = number of divisors of n, cf. A000005.
2, 4, 5, 7, 7, 10, 9, 12, 12, 14, 13, 18, 15, 18, 19, 21, 19, 24, 21, 26, 25, 26, 25, 32, 28, 30, 31, 34, 31, 38, 33, 38, 37, 38, 39, 45, 39, 42, 43, 48, 43, 50, 45, 50, 51, 50, 49, 58, 52, 56, 55, 58, 55, 62, 59, 64, 61, 62, 61, 72, 63, 66, 69, 71, 69, 74, 69, 74, 73, 78, 73
Offset: 1
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
Programs
-
Haskell
a062249 n = a000005 n + n -- Reinhard Zumkeller, Mar 29 2014
-
Maple
with(numtheory):seq(n+tau(n), n=1..71) ; # Zerinvary Lajos, Jun 04 2008
-
Mathematica
Table[n + DivisorSigma[0, n], {n, 100}] (* Indranil Ghosh, Apr 12 2017 *)
-
PARI
a(n) = n + numdiv(n) \\ Harry J. Smith, Aug 03 2009
-
Python
from sympy.ntheory import divisor_count [n + divisor_count(n) for n in range(101)] # Indranil Ghosh, Apr 12 2017
Formula
a(n) = n + A000005(n). - Omar E. Pol, Dec 12 2008
From Ilya Gutkovskiy, Apr 12 2017: (Start)
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 + zeta(s-1). (End)
Extensions
Formula and more terms from Vladeta Jovovic, Jul 03 2001
Comments