cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062267 Row sums of (signed) triangle A060821 (Hermite polynomials).

Original entry on oeis.org

1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018
  • Maple
    A062267 := proc(n)
        HermiteH(n,1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Feb 05 2013
  • Mathematica
    lst={};Do[p=HermiteH[n,1];AppendTo[lst,p],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *)
    With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x,0,nmax}],x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018
    
  • PARI
    a(n) = polhermite(n,1); \\ Michel Marcus, Jun 09 2018
    
  • Python
    from sympy import hermite, Poly
    def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017
    

Formula

a(n) = Sum_{m=0..n} A060821(n, m) = H(n, 1), with the Hermite polynomials H(n, x).
E.g.f.: exp(-x*(x-2)).
a(n) = 2*(a(n - 1) - (n - 1)*a(n - 2)). - Roger L. Bagula, Sep 11 2006
a(n) = 2^n * U(-n/2, 1/2, 1), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019