A062346 Consider 2n tennis players; a(n) is the number of matches needed to let every possible pair play each other.
3, 45, 210, 630, 1485, 3003, 5460, 9180, 14535, 21945, 31878, 44850, 61425, 82215, 107880, 139128, 176715, 221445, 274170, 335790, 407253, 489555, 583740, 690900, 812175, 948753, 1101870, 1272810, 1462905, 1673535, 1906128, 2162160, 2443155
Offset: 2
Examples
a(2)=3: given players a,b,c,d, the matches needed are (ab,cd), (ac,bd), (ad,bc). For example, for the K_4 on vertices {0,1,2,3} the possible matchings of size two are: {{0,1}, {2,3}}, {{0,3},{1,2}} and {{0,2},{1,3}}.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A014105.
Programs
-
Magma
[n*(n-1)*(2*n-3)*(2*n-1)/2: n in [2..40]]; // Vincenzo Librandi, Oct 13 2013
-
Maple
A062346:=n->n*(n-1)*(2*n-3)*(2*n-1)/2; seq(A062346(k),k=2..100); # Wesley Ivan Hurt, Oct 14 2013
-
Mathematica
CoefficientList[Series[3 (1 + 10 x + 5 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *) LinearRecurrence[{5,-10,10,-5,1},{3,45,210,630,1485},40] (* Harvey P. Dale, Nov 22 2022 *)
-
PARI
a(n) = n*(n-1)*(2*n-3)*(2*n-1)/2; \\ Joerg Arndt, Oct 13 2013
Formula
a(n) = n*(4*n^3 - 12*n^2 + 11*n - 3)/2. - Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
a(n+1) = (2*n+2)*(2*n+1)*(2*n)*(2*n-1)/8. - James Mahoney, Oct 19 2011
G.f.: 3*x^2*(1 + 10*x + 5*x^2)/(1 - x)^5. - Vincenzo Librandi, Oct 13 2013
a(n) = binomial(2*n^2-3*n+1, 2). - Wesley Ivan Hurt, Oct 14 2013
Extensions
More terms from Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
Comments