cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062346 Consider 2n tennis players; a(n) is the number of matches needed to let every possible pair play each other.

Original entry on oeis.org

3, 45, 210, 630, 1485, 3003, 5460, 9180, 14535, 21945, 31878, 44850, 61425, 82215, 107880, 139128, 176715, 221445, 274170, 335790, 407253, 489555, 583740, 690900, 812175, 948753, 1101870, 1272810, 1462905, 1673535, 1906128, 2162160, 2443155
Offset: 2

Views

Author

Michel ten Voorde, Jul 06 2001

Keywords

Comments

Number of matchings of size two (edges) in a complete graph on 2n vertices.

Examples

			a(2)=3: given players a,b,c,d, the matches needed are (ab,cd), (ac,bd), (ad,bc).
For example, for the K_4 on vertices {0,1,2,3} the possible matchings of size two are: {{0,1}, {2,3}}, {{0,3},{1,2}} and {{0,2},{1,3}}.
		

Crossrefs

Cf. A014105.

Programs

  • Magma
    [n*(n-1)*(2*n-3)*(2*n-1)/2: n in [2..40]]; // Vincenzo Librandi, Oct 13 2013
  • Maple
    A062346:=n->n*(n-1)*(2*n-3)*(2*n-1)/2; seq(A062346(k),k=2..100); # Wesley Ivan Hurt, Oct 14 2013
  • Mathematica
    CoefficientList[Series[3 (1 + 10 x + 5 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{3,45,210,630,1485},40] (* Harvey P. Dale, Nov 22 2022 *)
  • PARI
    a(n) = n*(n-1)*(2*n-3)*(2*n-1)/2; \\ Joerg Arndt, Oct 13 2013
    

Formula

a(n) = n*(4*n^3 - 12*n^2 + 11*n - 3)/2. - Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
a(n+1) = (2*n+2)*(2*n+1)*(2*n)*(2*n-1)/8. - James Mahoney, Oct 19 2011
G.f.: 3*x^2*(1 + 10*x + 5*x^2)/(1 - x)^5. - Vincenzo Librandi, Oct 13 2013
a(n) = binomial(2*n^2-3*n+1, 2). - Wesley Ivan Hurt, Oct 14 2013
a(n) = A014105(n-1)*(A014105(n-1)-1)/2. - Bruno Berselli, Dec 28 2016

Extensions

More terms from Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006