A121905
a(n) = ceiling(e^(n*Pi)).
Original entry on oeis.org
1, 24, 536, 12392, 286752, 6635624, 153552936, 3553321281, 82226315586, 1902773895293, 44031505860633, 1018919543279305, 23578503968558227, 545622913077172101, 12626092124920479898, 292176517015939695008
Offset: 0
-
C := ComplexField(); [Ceiling(Exp(Pi(C)*n)): n in [0..50]]; // G. C. Greubel, Nov 06 2017
-
Ceiling[E^(Pi Range[0, 20])] (* Vincenzo Librandi, Feb 21 2013 *)
-
for(n=0,50, print1(ceil(exp(Pi*n)), ", ")) \\ G. C. Greubel, Nov 06 2017
A124507
a(n) = floor(exp(n*Pi/2)).
Original entry on oeis.org
1, 4, 23, 111, 535, 2575, 12391, 59609, 286751, 1379410, 6635623, 31920519, 153552935, 738662922, 3553321280, 17093171648, 82226315585, 395547831244, 1902773895292, 9153250784394, 44031505860632, 211812562992413, 1018919543279304, 4901489415968642
Offset: 0
- Roger Penrose, The Road to Reality, (2005), p. 88 (figure 5.3).
-
R:= RealField(10); [Floor(Exp(n*Pi(R)/2)): n in [0..30]]; // G. C. Greubel, Nov 25 2018
-
Digits:= 2000:
a:= n-> floor(exp(n*Pi/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 25 2018
-
Table[ Floor@ Exp[n*Pi/2], {n, 0, 21}] (* Robert G. Wilson v, Dec 31 2006 *)
-
vector(30, n, n--; floor(exp(n*Pi/2))) \\ G. C. Greubel, Nov 25 2018
-
[floor(exp(n*pi/2)) for n in range(30)] # G. C. Greubel, Nov 25 2018
A062511
a(n) = round(exp(n * Pi)).
Original entry on oeis.org
1, 23, 535, 12392, 286751, 6635624, 153552935, 3553321281, 82226315586, 1902773895292, 44031505860632, 1018919543279305, 23578503968558226, 545622913077172100, 12626092124920479898, 292176517015939695007
Offset: 0
-
C := ComplexField(); [Round(Exp(n*Pi(C))): n in [0..30]]; // G. C. Greubel, Jan 15 2018
-
Round[Exp[Range[0,20]Pi]] (* Harvey P. Dale, Oct 06 2014 *)
-
for(n=0,21,print1(round(exp(n*Pi)), ", "))
-
{ default(realprecision, 200); for (n=0, 100, write("b062511.txt", n, " ", round(exp(n*Pi))) ) } \\ Harry J. Smith, Aug 08 2009
Showing 1-3 of 3 results.