cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062510 a(n) = 2^n + (-1)^(n+1).

Original entry on oeis.org

0, 3, 3, 9, 15, 33, 63, 129, 255, 513, 1023, 2049, 4095, 8193, 16383, 32769, 65535, 131073, 262143, 524289, 1048575, 2097153, 4194303, 8388609, 16777215, 33554433, 67108863, 134217729, 268435455, 536870913, 1073741823, 2147483649
Offset: 0

Views

Author

Jason Earls, Jun 24 2001

Keywords

Comments

The identity 2 = 2^2/3 + 2^3/(3*3) - 2^4/(3*3*9) - 2^5/(3*3*9*15) + + - - can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A014551. - Peter Bala, Nov 13 2013

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 29.

Crossrefs

Programs

  • Magma
    [2^n + (-1)^(n+1): n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
  • Mathematica
    LinearRecurrence[{1,2},{0,3}, 30] (* or *) Table[2^n - (-1)^n, {n,0,30}] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    for(n=0,22,print(2^n+(-1)^(n+1)))
    

Formula

a(n) = 3*A001045(n). - Paul Curtz, Jan 17 2008
G.f.: 3*x / ( (1+x)*(1-2*x) )
G.f.: Q(0) where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Apr 13 2013
E.g.f.: (exp(3*x) - 1)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001