cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A014551 Jacobsthal-Lucas numbers.

Original entry on oeis.org

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647, 4294967297, 8589934591
Offset: 0

Views

Author

Keywords

Comments

Also gives the number of points of period n in the subshift of finite type corresponding to the square matrix A=[1,2;1,0] (this is then given by trace(A^n)). - Thomas Ward, Mar 07 2001
Sequence is identical to its signed inverse binomial transform (autosequence of the second kind). - Paul Curtz, Jul 11 2008
a(n) can be expressed in terms of values of the Fibonacci polynomials F_n(x), computed at x=1/sqrt(2). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
Pisano period lengths: 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 2, 8, 6, 18, 4, ... - R. J. Mathar, Aug 10 2012
Let F(x) = Product_{n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number 1 + F(-1/2) = 2.83717 78068 73232 99799 ... = 2 + 1/(1 + 1/(5 + 1/(7 + 1/(17 + ...)))). See A111317. - Peter Bala, Dec 26 2012
With different signs, 2, -1, 5, -7, 17, -31, 65, -127, 257, -511, 1025, -2047, ... is the Lucas V(-1,-2) sequence. - R. J. Mathar, Jan 08 2013
The identity 2 = 2/2 + 2^2/(2*1) - 2^3/(2*1*5) - 2^4/(2*1*5*7) + 2^5/(2*1*5*7*17) + 2^6/(2*1*5*7*17*31) - - + + can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A062510. - Peter Bala, Nov 13 2013
For n >= 2, a(n) is the number of ways to tile a 2 X n strip, where the first two columns have an extra cell at the top, with 1 X 2 dominoes and 2 X 2 squares. Shown here is one of the a(7)=127 ways for the n=7 case:
._.
|_|_________.
| | | |_| |
||__|_|_|_|. - Greg Dresden, Sep 26 2021
Named by Horadam (1988) after the German mathematician Ernst Jacobsthal (1882-1965) and the French mathematician Édouard Lucas (1842-1891). - Amiram Eldar, Oct 02 2023

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. pp. 180, 255.
  • Lind and Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. (General material on subshifts of finite type)
  • Kritkhajohn Onphaeng and Prapanpong Pongsriiam. Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.6.
  • Abdelmoumène Zekiri, Farid Bencherif, Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.

Crossrefs

Cf. A001045 (companion "autosequence"), A019322, A066845, A111317.
Cf. A135440 (first differences), A166920 (partial sums).
Cf. A006995.

Programs

Formula

a(n+1) = 2 * a(n) - (-1)^n * 3.
From Len Smiley, Dec 07 2001: (Start)
a(n) = 2^n + (-1)^n.
G.f.: (2-x)/(1-x-2*x^2). (End)
E.g.f.: exp(x) + exp(-2*x) produces a signed version. - Paul Barry, Apr 27 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-1, 2*k)*3^(2*k)/2^(n-2). - Paul Barry, Feb 21 2003
0, 1, 5, 7 ... is 2^n - 2*0^n + (-1)^n, the 2nd inverse binomial transform of (2^n-1)^2 (A060867). - Paul Barry, Sep 05 2003
a(n) = 2*T(n, i/(2*sqrt(2))) * (-i*sqrt(2))^n with i^2=-1. - Paul Barry, Nov 17 2003
a(n) = A078008(n) + A001045(n+1). - Paul Barry, Feb 12 2004
a(n) = 2*A001045(n+1) - A001045(n). - Paul Barry, Mar 22 2004
a(0)=2, a(1)=1, a(n) = a(n-1) + 2*a(n-2) for n > 1. - Philippe Deléham, Nov 07 2006
a(2*n+1) = Product_{d|(2*n+1)} cyclotomic(d,2). a(2^k*(2*n+1)) = Product_{d|(2*n+1)} cyclotomic(2*d,2^(2^k)). - Miklos Kristof, Mar 12 2007
a(n) = 2^{(n-1)/2}F_{n-1}(1/sqrt(2)) + 2^{(n+2)/2}F_{n-2}(1/sqrt(2)). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
E.g.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k*(k+1)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
G.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
a(n) = sqrt(9*(A001045)^2 + (-1)^n*2^(n+2)). - Vladimir Shevelev, Mar 13 2013
G.f.: 2 + G(0)*x*(1+4*x)/(2-x), where G(k) = 1 + 1/(1 - x*(9*k-1)/( x*(9*k+8) - 2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 13 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 9*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
For n >= 1: a(n) = A006995(2^((n+2)/2)) when n is even, a(n) = A006995(3*2^((n-1)/2) - 1) when n is odd. - Bob Selcoe, Sep 04 2017
a(n) = J(n) + 4*J(n-1), a(0)=2, where J is A001045. - Yuchun Ji, Apr 23 2019
For n >= 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). - Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. - Kai Wang, May 06 2020
From Kai Wang, May 30 2020: (Start)
(2 - a(n+1)/a(n))/9 = Sum_{m>=n} (-2)^m/(a(m)*a(m+1)).
a(n) = 2*A001045(n+1) - A001045(n).
a(n)^2 = a(2*n) + 2*(-2)^n.
a(n)^2 = 9*A001045(n)^2 + 4*(-2)^n.
a(2*n) = 9*A001045(n)^2 + 2*(-2)^n.
2*A001045(m+n) = A001045(m)*a(n) + a(m)*A001045(n).
2*(-2)^n*A001045(m-n) = A001045(m)*a(n) - a(m)*A001045(n).
A001045(m+n) + (-2)^n*A001045(m-n) = A001045(m)*a(n).
A001045(m+n) - (-2)^n*A001045(m-n) = a(m)*A001045(n).
2*a(m+n) = 9*A001045(m)*A001045(n) + a(m)*a(n).
2*(-2)^n*a(m-n) = a(m)*a(n) - 9*A001045(m)*A001045(n).
a(m+n) - (-2)^n*a(m-n) = 9*A001045(m)*A001045(n).
a(m+n) + (-2)^n*a(m-n) = a(m)*a(n).
a(m+n)*a(m-n) - a(m)*a(m) = 9*(-2)^(m-n)*A001045(n)^2.
a(m+1)*a(n) - a(m)*a(n+1) = 9*(-2)^n*A001045(m-n). (End)
a(n) = F(n+1) + F(n-1) + Sum_{k=0..(n-2)} a(k)*F(n-1-k) for F(n) the Fibonacci numbers and for n > 1. - Greg Dresden, Jun 03 2020

A029858 a(n) = (3^n - 3)/2.

Original entry on oeis.org

0, 3, 12, 39, 120, 363, 1092, 3279, 9840, 29523, 88572, 265719, 797160, 2391483, 7174452, 21523359, 64570080, 193710243, 581130732, 1743392199, 5230176600, 15690529803, 47071589412, 141214768239
Offset: 1

Views

Author

Keywords

Comments

Also the number of 2-block covers of a labeled n-set. a(n) = A055154(n,2). Generally, number of k-block covers of a labeled n-set is T(n,k) = (1/k!)*Sum_{i = 1..k + 1} Stirling1(k + 1,i)*(2^(i - 1) - 1)^n. In particular, T(n,2) = (1/2!)*(3^n - 3), T(n,3) = (1/3!)*(7^n - 6*3^n + 11), T(n,4) = (1/4)!*(15^n - 10*7^n + 35*3^n - 50), ... - Vladeta Jovovic, Jan 19 2001
Conjectured to be the number of integers from 0 to 10^(n-1) - 1 that lack 0, 1, 2, 3, 4, 5 and 6 as a digit. - Alexandre Wajnberg, Apr 25 2005. This is easily verified to be true. - Renzo Benedetti, Sep 25 2008
Number of monic irreducible polynomials of degree 1 in GF(3)[x1,...,xn]. - Max Alekseyev, Jan 23 2006
Also, the greatest number of identical weights among which an odd one can be identified and it can be decided if the odd one is heavier or lighter, using n weighings with a comparing balance. If the odd one only needs to be identified, the sequence starts 4, 13, 40 and is A003462 (3^n - 1)/2, n > 1. - Tanya Khovanova, Dec 11 2006; corrected by Samuel E. Rhoads, Apr 18 2016
Binomial transform yields A134057. Inverse binomial transform yields A062510 with one additional 0 in front. - R. J. Mathar, Jun 18 2008
Numbers k where the recurrence s(0)=0, if s(k-1) >= k then s(k) = s(k-1) - k otherwise s(k) = s(k-1) + k produces s(k) = 0. - Hugo Pfoertner, Jan 05 2012
For n > 1: A008344(a(n)) = a(n). - Reinhard Zumkeller, May 09 2012
Also the number of edges in the (n-1)-Hanoi graph. - Eric W. Weisstein, Jun 18 2017
A level 1 Sierpiński triangle graph is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. a(n) is the number of degree 4 vertices in the level n Sierpinski triangle graph. - Allan Bickle, Jul 30 2020
Also the number of minimum vertex cuts in the n-Apollonian network. - Eric W. Weisstein, Dec 20 2020
Also the minimum number of turns in n-dimensional Euclidean space needed to visit all 3^n points of the grid {0, 1, 2}^n, moving in straight lines between turns (repeated visits and direction changes at non-grid points are allowed). - Marco Ripà, Aug 06 2025

Examples

			For the Sierpiński triangle, Level 1 is a triangle, so a(1) = 0.
Level 2 has three corners (degree 2) and three degree 4 vertices, so a(2) = 3.
The level 2 Hanoi graph has 3 triangles joined by 3 edges, so a(2+1) = 12.
		

Crossrefs

Cf. A007283, A029858, A067771, A233774, A233775, A246959 (Sierpiński triangle graphs).
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

Formula

a(n) = 3*a(n-1) + 3. - Alexandre Wajnberg, Apr 25 2005
O.g.f: 3*x^2/((1-x)*(1-3*x)). - R. J. Mathar, Jun 18 2008
a(n) = 3^(n-1) + a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = 3*A003462(n-1). - R. J. Mathar, Sep 10 2015
E.g.f.: 3*(-1 + exp(2*x))*exp(x)/2. - Ilya Gutkovskiy, Apr 19 2016
a(n) = A067771(n-1) - 3. - Allan Bickle, Jul 30 2020
a(n) = sigma(A008776(n-2)) for n>=2. - Flávio V. Fernandes, Apr 20 2021

Extensions

Corrected by T. D. Noe, Nov 07 2006

A051049 Number of moves needed to solve an (n+1)-ring baguenaudier if two simultaneous moves of the two end rings are counted as one.

Original entry on oeis.org

1, 1, 4, 7, 16, 31, 64, 127, 256, 511, 1024, 2047, 4096, 8191, 16384, 32767, 65536, 131071, 262144, 524287, 1048576, 2097151, 4194304, 8388607, 16777216, 33554431, 67108864, 134217727, 268435456, 536870911, 1073741824
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Purkiss sequence", after Henry John Purkiss who in 1865 found that this is the number of moves for the accelerated Chinese Rings puzzle (baguenaudier). [Email from Andreas M. Hinz, Feb 15 2017, who also pointed out that there was an error in the definition in this entry]. - N. J. A. Sloane, Feb 18 2017
The row sums of triangle A166692. - Paul Curtz, Oct 20 2009
The inverse binomial transform equals (-1)^n*A062510(n) with an extra leading term 1. - Paul Curtz, Oct 20 2009
This is the sequence A(1,1;1,2;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Also, the decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by Rules 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 37, and 381, based on the 5-celled von Neumann neighborhood. - Robert Price, Jan 02 2017

Crossrefs

Row sums of A131086.
Row sums of A166692.

Programs

Formula

a(n) = (2^(n+1) - (1 + (-1)^(n+1)))/2. - Paul Barry, Apr 24 2003
a(n+2) = a(n+1) + 2*a(n) + 1, a(0)=a(1)=1. - Paul Barry, May 01 2003
From Paul Barry, Sep 19 2003: (Start)
G.f.: (1 - x + x^2)/((1 - x^2)*(1 - 2*x));
e.g.f.: exp(2*x) - sinh(x). (End)
a(n) = ((Sum_{k=0..n} 2^k) + (-1)^n)/2 = (A000225(n+1) + (-1)^n)/2. - Paul Barry, May 27 2003
(a(n+1) - a(n))/3 = A001045(n). - Paul Barry, May 27 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n+1, 2*k). - Paul Barry, May 27 2003
a(n) = (Sum_{k=0..n} binomial(n,k) + (-1)^(n-k)) - 1. - Paul Barry, Jul 21 2003
a(n) = Sum_{k=0..n} Sum_{j=0..n-k, (j-k) mod 2 = 0} binomial(n-k, j). - Paul Barry, Jan 25 2005
Row sums of triangle A135221. - Gary W. Adamson, Nov 23 2007
a(n) = A001045(n+1) + A000975(n+1) - A000079(n). - Paul Curtz, Oct 20 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0) = a(1) = 1, a(2) = 4. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(n) = 3*a(n-1) - 2*a(n-2) + 3*(-1)^n. - Gary Detlefs, Dec 21 2010
a(n) = 3* A000975(n-1) + 1, n > 0. - Gary Detlefs, Dec 21 2010
a(n+2) = A001969(2^n+1) + A000069(2^n); evil + odious. - Johannes W. Meijer, Jun 24 2011, Jun 26 2011
E.g.f.: exp(2x) - sinh(x) = Q(0); Q(k) = 1 - k!*x^(k+1)/((2*k + 1)!*2^k - 2*(((2*k + 1)!*2^k)^2)/((2*k + 1)!*2^(k+1) - x^k*(k + 1)!/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2011
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(k-1,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A000975(n+1) - A001045(n). - Yuchun Ji, Jul 08 2018
a(n) = A026147(2^(n-1)) for n > 0. - Chunqing Liu, Dec 18 2022

Extensions

Edited and information added by Johannes W. Meijer, Jun 24 2011

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Views

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A230184 T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 3, 0, 3, 9, 0, 9, 27, 33, 0, 15, 159, 231, 129, 0, 33, 825, 3411, 1971, 513, 0, 63, 4395, 44487, 73857, 16815, 2049, 0, 129, 23307, 596973, 2432241, 1603431, 143451, 8193, 0, 255, 123729, 7957785, 82359177, 133265847, 34825803, 1223799, 32769, 0, 513
Offset: 1

Views

Author

R. H. Hardin, Oct 11 2013

Keywords

Comments

Table starts
.0.....3........3...........9.............15................33
.0.....9.......27.........159............825..............4395
.0....33......231........3411..........44487............596973
.0...129.....1971.......73857........2432241..........82359177
.0...513....16815.....1603431......133265847.......11393567289
.0..2049...143451....34825803.....7303192425.....1576417829097
.0..8193..1223799...756450105...400233701367...218117038953009
.0.32769.10440387.16430979183.21933865129257.30179260908320577

Examples

			Some solutions for n=3 k=4
..2..0..1..1....0..2..1..1....2..0..0..1....0..2..2..0....1..1..2..2
..0..2..2..0....0..0..2..2....0..2..1..1....0..1..2..0....2..0..0..0
..0..2..1..1....1..1..0..2....1..1..0..2....1..2..0..2....0..2..2..0
		

Crossrefs

Column 2 is A084508(n+1)
Row 1 is A062510(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-1) -4*a(n-2)
k=3: a(n) = 9*a(n-1) -4*a(n-2)
k=4: a(n) = 26*a(n-1) -97*a(n-2) +89*a(n-3) -18*a(n-4) +a(n-5)
k=5: [order 6] for n>8
k=6: [order 23] for n>24
k=7: [order 34] for n>37
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2)
n=2: a(n) = 4*a(n-1) +7*a(n-2) +a(n-3) -6*a(n-4) -5*a(n-5) for n>6
n=3: [order 21] for n>23
n=4: [order 93] for n>96

A230675 T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 3, 0, 3, 15, 0, 9, 87, 81, 0, 15, 513, 1173, 423, 0, 33, 3387, 18915, 17271, 2247, 0, 63, 21933, 340563, 730503, 251595, 11925, 0, 129, 141411, 6081561, 37034355, 28368687, 3669765, 63291, 0, 255, 913245, 108108231, 1844154933, 4022141121, 1100265795
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Comments

Table starts
.0......3.........3.............9...............15...................33
.0.....15........87...........513.............3387................21933
.0.....81......1173.........18915...........340563..............6081561
.0....423.....17271........730503.........37034355...........1844154933
.0...2247....251595......28368687.......4022141121.........559929294657
.0..11925...3669765....1100265795.....436827078531......169908632412447
.0..63291..53519163...42681522741...47444197636239....51564141085334199
.0.335943.780527655.1655698076319.5152946201086569.15648664251672721725

Examples

			Some solutions for n=3 k=4
..0..2..0..2....2..0..0..2....2..0..1..2....0..0..0..2....1..1..1..1
..0..0..1..1....0..1..0..2....1..1..0..1....2..2..0..1....1..2..1..2
..2..2..0..1....1..2..1..2....1..1..1..2....2..0..1..2....2..0..0..2
		

Crossrefs

Column 2 is A229841
Row 1 is A062510(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-1) +2*a(n-2) -a(n-3) -5*a(n-4)
k=3: a(n) = 14*a(n-1) +9*a(n-2) -9*a(n-3) +30*a(n-4) -19*a(n-5)
k=4: [order 32]
k=5: [order 80]
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2)
n=2: a(n) = 5*a(n-1) +6*a(n-2) +20*a(n-3) +12*a(n-4) +8*a(n-5)
n=3: [order 15] for n>16
n=4: [order 64] for n>65

A053088 a(n) = 3*a(n-2) + 2*a(n-3) for n > 2, a(0)=1, a(1)=0, a(2)=3.

Original entry on oeis.org

1, 0, 3, 2, 9, 12, 31, 54, 117, 224, 459, 906, 1825, 3636, 7287, 14558, 29133, 58248, 116515, 233010, 466041, 932060, 1864143, 3728262, 7456549, 14913072, 29826171, 59652314, 119304657, 238609284, 477218599, 954437166, 1908874365
Offset: 0

Views

Author

Pauline Gorman (pauline(AT)gorman65.freeserve.co.uk), Feb 26 2000

Keywords

Comments

Growth of happy bug population in GCSE math course work assignment.
The generalized (3,2)-Padovan sequence p(3,2;n). See the W. Lang link under A000931. - Wolfdieter Lang, Jun 25 2010
With offset 1: a(n) = -2^n*Sum_{k=0..n} k^p*q^k for p=1, q=-1/2. See also A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2). - Stanislav Sykora, Nov 27 2013
From Paul Curtz, Nov 02 2021 (Start)
a(n-2) difference table (from 0, 0, a(n)):
0 0 1 0 3 2 9 12 31 54 ...
0 1 -1 3 -1 7 3 19 23 63 ...
1 -2 4 -4 8 -4 16 4 40 44 ...
-3 6 -8 12 -12 20 -12 36 4 84 ...
9 -14 20 -24 32 -32 48 -32 80 0 ...
-23 34 -44 56 -64 80 -80 112 -80 176 ...
57 -78 100 -120 144 -160 192 -192 256 -192 ...
... .
The signature is valid for every row.
a(n-2) + a(n-1) = A001045(n).
a(n-2) + a(n+1) = A062510(n) = 3*A001045(n).
a(n-2) + a(n+3) = see A144472(n+1).
Second subdiagonal: 1, 6, 20, 56, 144, 352, ... = A014480(n).
First subdiagonal: -A036895(n) = -2*A001787(n).
Main diagonal: A001787(n) = -first and -third upper diagonals.
Second, fourth and fifth upper diagonals: A001792(n), A045891(n+2) and A172160(n+1). (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 3 x^2 - 2 x^3), {x, 0, 32}], x] (* Michael De Vlieger, Sep 30 2019 *)
  • PARI
    c(n)=(2^(n+1)-(-1)^n*(3*n+2))/9; a(n)=c(n+1); \\ Stanislav Sykora, Nov 27 2013

Formula

G.f.: 1 / (1-3*x^2-2*x^3).
With offset 1: a(1)=1; a(n) = 2*a(n-1) - (-1)^n*n; a(n) = (1/9)*(2^(n+1) - (-1)^n*(3*n+2)). - Benoit Cloitre, Nov 02 2002
a(n) = Sum_{k=0..floor(n/2)} A078008(n-2k). - Paul Barry, Nov 24 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)*3^k*(2/3)^(n-2k). - Paul Barry, Oct 16 2004
a(n) = Sum_{k=0..n} A078008(k)*(1 - (-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = ( 2^(n+2) + (-1)^n*(3*n+5) )/9 (see also the B. Cloitre comment above). From the o.g.f. 1/(1-3*x^2-2*x^3) = 1/((1-2*x)*(1+x)^2) = (3/(1+x)^2 + 2/(1+x) + 4/(1-2*x))/9. - Wolfdieter Lang, Jun 25 2010
From Wolfdieter Lang, Aug 26 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + (-1)^n for n > 1, a(0)=1, a(1)=0.
Due to the identity for the o.g.f. A(x): A(x) = x*(1+2*x)*A(x) + 1/(1+x).
(This recurrence was observed by Gary Detlefs in a 08/25/10 e-mail to the author.) (End)
G.f.: Sum_{n>=0} binomial(3*n,n)*x^n / (1+x)^(3*n+3). - Paul D. Hanna, Mar 03 2012
E.g.f.: 1 + (1/9)*(exp(-x)*(3*x - 2) + 2*exp(2*x)). - Stefano Spezia, Sep 27 2019

Extensions

More terms from James Sellers, Feb 28 2000 and Christian G. Bower, Feb 29 2000

A183554 T(n,k)=Number of nXk 0..2 arrays with each element equal to either the maximum or the minimum of its horizontal and vertical neighbors.

Original entry on oeis.org

0, 3, 3, 3, 15, 3, 9, 71, 71, 9, 15, 299, 583, 299, 15, 33, 1325, 5287, 5287, 1325, 33, 63, 5845, 46841, 95101, 46841, 5845, 63, 129, 25785, 417809, 1728533, 1728533, 417809, 25785, 129, 255, 113841, 3721925, 31363527, 63868351, 31363527, 3721925, 113841
Offset: 1

Views

Author

R. H. Hardin Jan 05 2011

Keywords

Comments

Table starts
...0.......3..........3.............9...............15..................33
...3......15.........71...........299.............1325................5845
...3......71........583..........5287............46841..............417809
...9.....299.......5287.........95101..........1728533............31363527
..15....1325......46841.......1728533.........63868351..........2359134621
..33....5845.....417809......31363527.......2359134621........177385265619
..63...25785....3721925.....569461759......87176303417......13344696858771
.129..113841...33169105...10339213765....3221377019429....1003889179688773
.255..502523..295565367..187720469393..119037100116183...75519989933088273
.513.2218399.2633809823.3408294462361.4398697422258081.5681183354145927001

Examples

			Some solutions for 4X3
..0..0..1....0..0..1....0..0..0....0..0..1....1..0..0....1..1..0....1..1..1
..2..0..1....0..2..1....2..2..0....2..2..1....1..1..0....0..0..0....1..2..1
..2..0..0....2..2..2....2..1..2....2..1..1....0..1..0....0..0..1....1..2..1
..2..2..2....0..0..0....2..1..2....2..2..1....0..1..1....2..2..1....1..2..1
		

Crossrefs

Column 1 is A062510(n-1)

A221967 T(n,k)=Number of -k..k arrays of length n with the sum ahead of each element differing from the sum following that element by k or less.

Original entry on oeis.org

3, 5, 9, 7, 25, 15, 9, 49, 65, 33, 11, 81, 175, 225, 63, 13, 121, 369, 833, 705, 129, 15, 169, 671, 2241, 3647, 2305, 255, 17, 225, 1105, 4961, 12609, 16513, 7425, 513, 19, 289, 1695, 9633, 34111, 73089, 73983, 24065, 1023, 21, 361, 2465, 17025, 78273, 241153
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Table starts
....3.......5.........7..........9..........11...........13............15
....9......25........49.........81.........121..........169...........225
...15......65.......175........369.........671.........1105..........1695
...33.....225.......833.......2241........4961.........9633.........17025
...63.....705......3647......12609.......34111........78273........159615
..129....2305.....16513......73089......241153.......653185.......1535745
..255....7425.....73983.....419841.....1690623......5407233......14661375
..513...24065....332801....2419713....11888129.....44890625.....140355585
.1023...77825...1495039...13930497....83512319....372332545....1342437375
.2049..251905...6719489...80230401...586864641...3089205249...12843782145
.4095..815105..30195711..462012417..4123582463..25628045313..122870296575
.8193.2637825.135700481.2660655105.28975366145.212618141697.1175482548225

Examples

			Some solutions for n=6 k=4
..4...-2....4....1...-4...-1...-2....1...-2...-1....1....3....4....1...-1...-1
.-4....4...-4....0....4....4....3....2....3....2...-2...-4...-2...-3....3....3
..1...-3....3...-2...-1...-2...-3...-2...-2....2....0....3....1....2....0...-1
..0....2...-1....3...-2....0....2....2....3...-3....4....1...-3...-2...-2....1
..3...-4...-2...-3....3....3...-2....1...-1....0...-1...-3....0....3...-3...-2
..1....1....2....1...-1...-2...-1....1...-1....1....0....1....2...-4....4....2
		

Crossrefs

Column 1 is A062510(n+1)
Column 2 is A189318
Row 2 is A016754
Row 3 is A005917(n+1)
Row 4 is A142993

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3)
k=3: a(n) = 3*a(n-1) +8*a(n-2) -4*a(n-3) -8*a(n-4)
k=4: a(n) = 5*a(n-1) +8*a(n-2) -20*a(n-3) -8*a(n-4) +16*a(n-5)
k=5: a(n) = 5*a(n-1) +18*a(n-2) -20*a(n-3) -48*a(n-4) +16*a(n-5) +32*a(n-6)
k=6: a(n) = 7*a(n-1) +18*a(n-2) -56*a(n-3) -48*a(n-4) +112*a(n-5) +32*a(n-6) -64*a(n-7)
k=7: a(n) = 7*a(n-1) +32*a(n-2) -56*a(n-3) -160*a(n-4) +112*a(n-5) +256*a(n-6) -64*a(n-7) -128*a(n-8)
Empirical for row n:
n=1: a(n) = 2*n + 1
n=2: a(n) = 4*n^2 + 4*n + 1
n=3: a(n) = 4*n^3 + 6*n^2 + 4*n + 1
n=4: a(n) = (16/3)*n^4 + (32/3)*n^3 + (32/3)*n^2 + (16/3)*n + 1
n=5: a(n) = (20/3)*n^5 + (50/3)*n^4 + 20*n^3 + (40/3)*n^2 + (16/3)*n + 1
n=6: a(n) = (128/15)*n^6 + (128/5)*n^5 + (112/3)*n^4 + 32*n^3 + (272/15)*n^2 + (32/5)*n + 1
n=7: a(n) = (488/45)*n^7 + (1708/45)*n^6 + (2912/45)*n^5 + (602/9)*n^4 + (2072/45)*n^3 + (952/45)*n^2 + (32/5)*n + 1

A229847 T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally or vertically next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 3, 3, 3, 15, 3, 9, 81, 81, 9, 15, 423, 987, 423, 15, 33, 2247, 13401, 13401, 2247, 33, 63, 11925, 178311, 453837, 178311, 11925, 63, 129, 63291, 2381469, 15269193, 15269193, 2381469, 63291, 129, 255, 335943, 31783299, 514371027, 1296261759, 514371027
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Table starts
...0......3.........3............9..............15..................33
...3.....15........81..........423............2247...............11925
...3.....81.......987........13401..........178311.............2381469
...9....423.....13401.......453837........15269193...........514371027
..15...2247....178311.....15269193......1296261759........110203382331
..33..11925...2381469....514371027....110203382331......23643209345079
..63..63291..31783299..17324310663...9366963651897....5071373978989773
.129.335943.424240833.583513743897.796197119067381.1087831682400037245

Examples

			Some solutions for n=3 k=4
..0..1..2..0....1..1..0..1....1..1..2..0....1..1..1..1....1..1..1..2
..2..1..1..1....2..2..2..1....1..2..1..1....1..0..2..0....0..2..0..0
..1..1..2..0....0..0..2..1....1..0..0..2....0..2..1..1....2..1..1..1
		

Crossrefs

Column 1 is A062510(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2)
k=2: a(n) = 5*a(n-1) +2*a(n-2) -a(n-3) -5*a(n-4)
k=3: [order 15]
k=4: [order 53]
Showing 1-10 of 34 results. Next