A062539 Decimal expansion of the Lemniscate constant or Gauss's constant.
2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
Offset: 1
Examples
2.622057554292119810464839589891119413682754951431623162816821703...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.3 and 6.2, pp. 99, 420.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..5000
- Lorenz Milla, World record computation of Lemniscate Constant (2,000,000,000,000 digits).
- Simon Plouffe, Lemniscate or Gauss constant.
- Simon Plouffe, Lemniscate constant or Gauss constant.
- Eric Weisstein's World of Mathematics, Lemniscate Constant.
- Wikipedia, Lemniscate constant.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
-
Maple
evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2,120); # Muniru A Asiru, Oct 08 2018 evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4),120); # Martin Renner, Aug 16 2019 evalf(1/2*Beta(1/4,1/2),120); # Martin Renner, Aug 16 2019 evalf(2*int(1/sqrt(1-x^4),x=0..1),120); # Martin Renner, Aug 16 2019
-
Mathematica
RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
-
PARI
print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
-
PARI
allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
-
PARI
Pi/agm(1,sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015
-
PARI
intnum(x=0,Pi, 1/sqrt(1 + sin(x)^2)) \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
From Martin Renner, Aug 16 2019: (Start)
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals Pi/AGM(1, sqrt(2)). - Jean-François Alcover, Feb 28 2021
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
Equals Pi*A014549. - Hugo Pfoertner, Jun 28 2024
Equals Integral_{x=0..Pi} 1/sqrt(1 + sin(x)^2) dx = EllipticK(-1) (see Finch at p. 420). - Stefano Spezia, Dec 15 2024
Equals Gamma(1/4)^2 / (sqrt(Pi)*2^(3/2)). - Vaclav Kotesovec, Apr 26 2025
Equals (161*6440^(1/4))/(2*Sum_{k>=0} N(k)/D(k)) with N(k) = Pochhammer(1/8,k) * Pochhammer(5/8,k) * (275+8640*k) and D(k) = (k!)^2*25921^k [Jorge Zuniga, 2023].