A062748 Fourth column (r=3) of FS(3) staircase array A062745.
3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, 454, 559, 679, 815, 968, 1139, 1329, 1539, 1770, 2023, 2299, 2599, 2924, 3275, 3653, 4059, 4494, 4959, 5455, 5983, 6544, 7139, 7769, 8435, 9138, 9879, 10659, 11479, 12340, 13243, 14189, 15179, 16214, 17295, 18423
Offset: 0
Examples
G.f. = 3 + 9*x + 19*x^2 + 34*x^3 + 55*x^4 + 83*x^5 + 119*x^6 + 164*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Guillaume Aupy and Julien Herrmann. Periodicity in optimal hierarchical checkpointing schemes for adjoint computations. Optimization Methods and Software, Volume 32, 2017 - Issue 3. Preprint
- D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[Binomial(n+4,3) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
-
Maple
seq(((n^3-n)/6)-1,n=3..40); # Zerinvary Lajos, May 05 2007
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{3,9,19,34},40] (* Harvey P. Dale, Jan 13 2019 *) Binomial[4+Range[0,50], 3] -1 (* G. C. Greubel, Apr 22 2024 *)
-
PARI
{a(n) = binomial(n+4, 3) - 1}; /* Michael Somos, Jan 28 2018 */
-
SageMath
[binomial(n+4,3) - 1 for n in range(51)] # G. C. Greubel, Apr 22 2024
Formula
a(n) = A062745(n+2, 3) = binomial(n+4, 3) - 1 = (n+1)*(n^2 + 8*n + 18)/3!.
G.f.: N(3;1, x)/(1-x)^4 with N(3;1, x) = 3 - 3*x + x^2, polynomial of the second row of A062746.
a(n-3) = ((n^3 - n)/6) - 1, n >= 3. - Zerinvary Lajos, May 05 2007
a(n) = A000292(n+2) - 1. - Zerinvary Lajos, May 05 2007
a(n) = Sum_{i=2..n} i*(i+1)/2. - Artur Jasinski, Mar 14 2008
a(n) = -A050407(-1-n) for all n in Z. - Michael Somos, Jan 28 2018
E.g.f.: (1/6)*(18 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 22 2024
Comments