cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062748 Fourth column (r=3) of FS(3) staircase array A062745.

Original entry on oeis.org

3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, 454, 559, 679, 815, 968, 1139, 1329, 1539, 1770, 2023, 2299, 2599, 2924, 3275, 3653, 4059, 4494, 4959, 5455, 5983, 6544, 7139, 7769, 8435, 9138, 9879, 10659, 11479, 12340, 13243, 14189, 15179, 16214, 17295, 18423
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 3}_{2}, n >= 0.
If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=6, a(n-6) = coeff(charpoly(A,x), x^(n-2)). - Milan Janjic, Jan 26 2010
For n>=4, a(n-4) is the number of permutations of 1,2,...,n, such that n-3 is the only up-point, or, the same, a(n-4) is up-down coefficient {n,4} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014

Examples

			G.f. = 3 + 9*x + 19*x^2 + 34*x^3 + 55*x^4 + 83*x^5 + 119*x^6 + 164*x^7 + ...
		

Crossrefs

A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+4,3) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    seq(((n^3-n)/6)-1,n=3..40); # Zerinvary Lajos, May 05 2007
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{3,9,19,34},40] (* Harvey P. Dale, Jan 13 2019 *)
    Binomial[4+Range[0,50], 3] -1 (* G. C. Greubel, Apr 22 2024 *)
  • PARI
    {a(n) = binomial(n+4, 3) - 1}; /* Michael Somos, Jan 28 2018 */
    
  • SageMath
    [binomial(n+4,3) - 1 for n in range(51)] # G. C. Greubel, Apr 22 2024

Formula

a(n) = A062745(n+2, 3) = binomial(n+4, 3) - 1 = (n+1)*(n^2 + 8*n + 18)/3!.
G.f.: N(3;1, x)/(1-x)^4 with N(3;1, x) = 3 - 3*x + x^2, polynomial of the second row of A062746.
a(n-3) = ((n^3 - n)/6) - 1, n >= 3. - Zerinvary Lajos, May 05 2007
a(n) = A000292(n+2) - 1. - Zerinvary Lajos, May 05 2007
a(n) = Sum_{i=2..n} i*(i+1)/2. - Artur Jasinski, Mar 14 2008
a(n) = -A050407(-1-n) for all n in Z. - Michael Somos, Jan 28 2018
a(n) = A000292(n+3) - A000124(n+3). - Torlach Rush, Aug 03 2018
E.g.f.: (1/6)*(18 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 22 2024