A062781 Number of arithmetic progressions of four terms and any mean which can be extracted from the set of the first n positive integers.
0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..750
- Michael Somos, Somos Polynomials
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Maple
seq(coeff(series(x^4/((1-x^3)*(1-x)^2),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
-
Mathematica
RecurrenceTable[{a[0]==0, a[n]==Floor[n/3] + a[n-1]}, a, {n, 49}] (* Jon Maiga, Nov 25 2018 *)
-
Sage
[floor(binomial(n,2)/3) for n in range(0,50)] # Zerinvary Lajos, Dec 01 2009
Formula
a(n) = P(n,4), where P(n,k) = n*floor(n/(k - 1)) - (1/2)(k - 1)(floor(n/(k - 1))*(floor(n/(k - 1)) + 1)); recursion: a(n) = a(n-3) + n - 3; a(1) = a(2) = a(3) = 0.
From Hieronymus Fischer, Jun 01 2007: (Start)
a(n) = (1/2)*floor((n-1)/3)*(2*n - 3 - 3*floor((n-1)/3)).
G.f.: x^4/((1 - x^3)*(1 - x)^2). (End)
a(n) = floor((n-1)/3) + a(n-1). - Jon Maiga, Nov 25 2018
E.g.f.: ((4 - 6*x + 3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Franck Maminirina Ramaharo, Nov 25 2018
Comments