A062799 Inverse Möbius transform of the numbers of distinct prime factors (A001221).
0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 10, 2, 4, 3, 7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 10, 1, 12, 1, 7, 7, 4, 1, 13, 2, 7, 4, 7, 1, 10, 4, 10, 4, 4, 1, 20, 1, 4, 7, 6, 4, 12, 1, 7, 4, 12, 1, 17, 1, 4, 7, 7, 4, 12, 1, 13, 4, 4
Offset: 1
Keywords
Examples
n = 255: divisors = {1, 3, 5, 15, 17, 51, 85, 255}, a(255) = 0+1+1+2+1+2+2+3 = 12.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014.
- E. Pérez Herrero, Psychedelic Geometry Blogspot, CURIOUS SERIES-002
Programs
-
Haskell
a062799 = sum . map a001221 . a027750_row -- Reinhard Zumkeller, Dec 02 2014
-
Maple
read("transforms") ; A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc: omega := [seq(A001221(n),n=1..80)] ; ones := [seq(1,n=1..80)] ; DIRICHLET(ones,omega) ; # R. J. Mathar, Sep 23 2011 N:= 1000: # to get a(1) to a(N) B:= Vector(N,t-> nops(numtheory:-factorset(t))): A:= Vector(N): for d from 1 to N do md:= d*[$1..floor(N/d)]; A[md]:= map(`+`,A[md],B[d]) od: convert(A,list); # Robert Israel, Oct 21 2015
-
Mathematica
f[n_] := Block[{d = Divisors[n], c = l = 0, k = 2}, l = Length[d]; While[k < l + 1, c = c + Length[ FactorInteger[ d[[k]] ]]; k++ ]; Return[c]]; Table[f[n], {n, 1, 100} ] omega[n_] := Length[FactorInteger[n]]; SetAttributes[omega, Listable]; omega[1] := 0; A062799[n_] := Plus @@ omega[Divisors[n]] (* Enrique Pérez Herrero, Sep 08 2009 *)
-
PARI
a(n)=my(f=factor(n)[,2],s);forvec(v=vector(#f,i,[0,f[i]]),s+=sum(i=1,#f,v[i]>0));s \\ Charles R Greathouse IV, Oct 15 2015
-
PARI
vector(100, n, sumdiv(n, k, omega(k))) \\ Altug Alkan, Oct 15 2015
Formula
a(n) = Sum_{d|n} A001221(d), that is, where d runs over divisors of n.
For squarefree s (i.e., s in A005117), a(s) = omega(s)*2^(omega(s)-1), where omega(n) = A001221(n). Also, for n>1, a(n) <= omega(n)*A000005(n) - 1. - Enrique Pérez Herrero, Sep 08 2009
Let n=Product_{i=1..omega(n)} p(i)^e(i). a(n) = d[Product_{i=1..omega(n)} (1 + e(i)*x)]/dx|x=1. In other words, a(n) = Sum_{m>=1} A146289(n,m)*m. - Geoffrey Critzer, Feb 10 2015
a(A000040(n)) = 1; a(A001248(n)) = 2; a(A030078(n)) = 3; a(A030514(n)) = 4; a(A050997(n)) = 5. - Altug Alkan, Oct 17 2015
a(n) = Sum_{prime p|n} A000005(n/p). - Max Alekseyev, Aug 11 2016
G.f.: Sum_{k>=1} omega(k)*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221). - Ilya Gutkovskiy, Jan 16 2017
Dirichlet g.f.: zeta(s)^2*primezeta(s) where primezeta(s) = Sum_{prime p} p^(-s). - Benedict W. J. Irwin, Jul 16 2018
Comments