A001923 a(n) = Sum_{k=1..n} k^k.
0, 1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928, 9211817190184, 312086923782437, 11424093749340453, 449317984130199828, 18896062057839751444, 846136323944176515621
Offset: 0
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, p. 308.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- Mohammad K. Azarian, On the hyperfactorial function, hypertriangular function and the discriminants of certain polynomials, Int. J. Pure Appl. Math., Vol. 36, No. 2 (2007), pp. 251-257.
- Andrew Cusumano, Problem H-656, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; A Sequence Tending To e, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.
- G. W. Wishard (proposer) and F. Underwood (solution), Problem 4155: Bound for a Finite Sum, Amer. Math. Monthly, Vol. 53, No. 8 (1946), pp. 471-473.
Crossrefs
Programs
-
Haskell
a001923 n = a001923_list !! n a001923_list = scanl (+) 0 $ tail a000312_list -- Reinhard Zumkeller, Jul 11 2014
-
Mathematica
Accumulate[Join[{0},Table[k^k,{k,20}]]] (* Harvey P. Dale, Feb 11 2015 *)
-
PARI
for(n=1,20,print1(sum(x=1,n,x^x), ", ")) \\ Jorge Coveiro, Dec 24 2004
-
Python
# generates initial segment of sequence from itertools import accumulate def f(k): return 0 if k == 0 else k**k def aupton(nn): return list(accumulate(f(k) for k in range(nn+1))) print(aupton(17)) # Michael S. Branicky, Feb 12 2022
Formula
a(n) = A062970(n) - 1.
a(n+1)/a(n) > e*n and a(n+1)/a(n) is asymptotic to e*n. - Benoit Cloitre, Sep 29 2002
For n > 0: a(n) = a(n-1) + A000312(n). - Reinhard Zumkeller, Jul 11 2014
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022
Comments