A128981 Numbers k such that k divides Sum_{j=1..k} j^j = A001923(k).
1, 4, 17, 19, 148, 1577, 3564, 4388, 5873, 6639, 8579, 62500, 376636, 792949, 996044, 1174065, 3333551, 5179004, 7516003
Offset: 1
Programs
-
Maple
a:=0: for n from 1 to 2000 do a:=a+n^n: if a mod n=0 then print(n); fi; od: # Revised program from R. J. Mathar, Jun 18 2015
-
Mathematica
f=0; Do[ f=f+k^k; If[ IntegerQ[f/k], Print[k] ], {k,1,6639} ]
-
PARI
for(n=1,10^4, s=sum(i=1,n,Mod(i,n)^i); if(!Mod(s,n), print1(n,", "))) \\ Derek Orr, Jun 18 2015
-
Python
from itertools import accumulate, count, islice def A128981_gen(): # generator of terms yield 1 for i, j in enumerate(accumulate(k**k for k in count(1)),start=2): if j % i == 0: yield i A128981_list = list(islice(A128981_gen(),10)) # Chai Wah Wu, Jun 18 2022
Extensions
a(11) and a(12) from Jon E. Schoenfield, May 09 2007
a(13) = 376636 from Alexander Adamchuk, May 03 2010
a(14)-a(16) from Lars Blomberg, May 10 2011
a(17) from Giovanni Resta, Jul 13 2015
a(18)-a(19) from Hiroaki Yamanouchi, Aug 25 2015
Comments