cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001923 a(n) = Sum_{k=1..n} k^k.

Original entry on oeis.org

0, 1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928, 9211817190184, 312086923782437, 11424093749340453, 449317984130199828, 18896062057839751444, 846136323944176515621
Offset: 0

Views

Author

Keywords

Comments

Starting from the second term, 1, the terms could be described as the special case (n=1; j=1) of the following general formula: a(n) = Sum [(n + k - 1)]^(k) n=1; j=1; i=1,2,3,...,... For (n=0; j=1) the formula yields A062815 n=0; j=1; i=2,3,4,... For (n=2; j=0) we get A060946 and for (n=3; j=0) A117887. - Alexander R. Povolotsky, Sep 01 2007
From Luan Alberto Ferreira, Aug 01 2017: (Start)
If n == 0 or 3 (mod 4), then a(n) == 0 (mod 4).
If n == 0, 4, 7, 14, 15 or 17 (mod 18), then a(n) == 0 (mod 3). (End)
Called the hypertriangular function by M. K. Azarian. - Light Ediand, Nov 19 2021

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, p. 308.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A073825, A062970 (another version).

Programs

  • Haskell
    a001923 n = a001923_list !! n
    a001923_list = scanl (+) 0 $ tail a000312_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Mathematica
    Accumulate[Join[{0},Table[k^k,{k,20}]]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    for(n=1,20,print1(sum(x=1,n,x^x), ", ")) \\ Jorge Coveiro, Dec 24 2004
    
  • Python
    # generates initial segment of sequence
    from itertools import accumulate
    def f(k): return 0 if k == 0 else k**k
    def aupton(nn): return list(accumulate(f(k) for k in range(nn+1)))
    print(aupton(17)) # Michael S. Branicky, Feb 12 2022

Formula

a(n) = A062970(n) - 1.
a(n+1)/a(n) > e*n and a(n+1)/a(n) is asymptotic to e*n. - Benoit Cloitre, Sep 29 2002
For n > 0: a(n) = a(n-1) + A000312(n). - Reinhard Zumkeller, Jul 11 2014
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A209424 Triangle defined by g.f.: A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^n * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 76, 347, 76, 1, 1, 701, 20429, 20429, 701, 1, 1, 8477, 1919660, 10707908, 1919660, 8477, 1, 1, 126126, 259227625, 9203978774, 9203978774, 259227625, 126126, 1, 1, 2223278, 47484618291, 12099129236936, 72078431500368
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Comments

Column 1 is A060946.
Column 2 is A209425.
Row sums equal A167007.
Antidiagonal sums equal A166894.
Central terms form A209426.

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 76, 347, 76, 1;
1, 701, 20429, 20429, 701, 1;
1, 8477, 1919660, 10707908, 1919660, 8477, 1;
1, 126126, 259227625, 9203978774, 9203978774, 259227625, 126126, 1;
1, 2223278, 47484618291, 12099129236936, 72078431500368, 12099129236936, 47484618291, 2223278, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+12*y+12*y^2+y^3)*x^3 + (1+76*y+20429*y^2+76*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^2*y + y^2)*x^2/2
+ (1 + 3^3*y + 3^3*y^2 + y^3)*x^3/3
+ (1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
in which the coefficients are found in triangle A209427.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^n)),n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A345094 a(n) = Sum_{k=1..n} floor(n/k)^(floor(n/k) - 1).

Original entry on oeis.org

1, 3, 11, 68, 630, 7790, 117664, 2097224, 43046801, 1000000643, 25937425245, 743008378547, 23298085130341, 793714773371879, 29192926025508929, 1152921504608944840, 48661191875668966346, 2185911559738739586562, 104127350297911284587436
Offset: 1

Views

Author

Seiichi Manyama, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^(n\k-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, k^(k-1)*x^(j*k)))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} k^(k-1) * x^(j*k) * (1 - x^j).

A355950 a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).

Original entry on oeis.org

1, 4, 14, 81, 707, 8495, 126145, 2223364, 45270095, 1045270723, 26982695325, 769991073865, 24068076196347, 817782849568143, 30010708874959403, 1182932213483903598, 49844124089150772080, 2235755683827890358557, 106363105981739131891399
Offset: 1

Views

Author

Seiichi Manyama, Jul 21 2022

Keywords

Crossrefs

Partial sums of A262843.

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))
    
  • Python
    def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).
G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).

A228899 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^(k+1) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 12, 1, 1, 10, 71, 76, 1, 1, 15, 281, 2153, 701, 1, 1, 21, 861, 29166, 129509, 8477, 1, 1, 28, 2212, 244725, 7664343, 12391414, 126126, 1, 1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1, 1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Comments

Note that the following g.f. does NOT yield an integer triangle: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^k * y^k ).

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 12, 1;
1, 10, 71, 76, 1;
1, 15, 281, 2153, 701, 1;
1, 21, 861, 29166, 129509, 8477, 1;
1, 28, 2212, 244725, 7664343, 12391414, 126126, 1;
1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1;
1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1; ...
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+12*y^2+y^3)*x^3 + (1+10*y+71*y^2+76*y^3+y^4)*x^4 + (1+15*y+281*y^2+2153*y^3+701*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x
+ (1 + 2^2*x + x^2)*x^2/2
+ (1+ 3^2*y + 3^3*y^2 + y^3)*x^3/3
+ (1+ 4^2*y + 6^3*y^2 + 4^4*y^3 + x^4)*x^4/4
+ (1+ 5^2*y + 10^3*y^2 + 10^4*y^3 + 5^5*y^4 + y^5)*x^5/5
+ (1+ 6^2*y + 15^3*y^2 + 20^4*y^3 + 15^5*y^4 + 6^6*y^5 + y^6)*x^6/6 +...
in which the coefficients form A219207(n,k) = binomial(n, k)^(k+1).
		

Crossrefs

Cf. A184730 (row sums), A181070 (antidiagonal sums), A060946 (diagonal).
Cf. related triangles: A219207, A209424, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m, j)^(j+1)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A232821 a(n) = n^(n-1) - Sum_{k=1..n-1} k^(k-1).

Original entry on oeis.org

1, 1, 6, 52, 549, 7075, 109172, 1971026, 40823443, 954730001, 24892154602, 716025676088, 22528094057193, 769646697066375, 28375143175948712, 1122910795732014438, 47478259662185188967, 2136067435649547983973, 101891594614083396452878
Offset: 1

Views

Author

Derek Orr, Nov 30 2013

Keywords

Examples

			6^5 - 5^4 - 4^3 - 3^2 - 2^1 - 1^0 = 7075 so a(6) = 7075.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^(n - 1) - Sum[i^(i - 1), {i, 1, n - 1}]; Table[a[n], {n, 20}] (* Carlos Eduardo Olivieri, May 29 2015 *)
  • PARI
    vector(20,n,n^(n-1)-sum(i=1,n-1,i^(i-1))) \\ Derek Orr, Apr 05 2015
  • Python
    def sub(n):
      num = n**(n-1)
      for i in range(0, n-1):
          num -= (i+1)**i
      return num
    n = 1
    while n < 100:
      print(sub(n), end=', ')
      n += 1
    

Formula

a(n) = n^(n-1) - A060946(n-1).
a(n) = A000169(n) - Sum_{k=1..n-1} A000169(k).

Extensions

Name edited by Derek Orr, Apr 05 2015

A128884 Sum of all matrix elements of n X n Vandermonde matrix of numbers 1,2,...,n, i.e., the matrix A with A[i,j] = i^(j-1), 1 <= i <= n, 1 <= j <= n.

Original entry on oeis.org

1, 5, 23, 144, 1279, 15035, 219463, 3816512, 76928685, 1762344781, 45207853767, 1283438430208, 39944988007339, 1352308628695895, 49471532968242991, 1944732944768690432, 81748776383970349721, 3659142661552743151353
Offset: 1

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

p divides a(p+1) for odd primes p.
p^2 divides a(p+1) for prime p = {3, 7, 71, ...}.
Determinant of n X n Vandermonde matrix of numbers 1,2,...,n equals Product_{k=1..n-1} k! = A000178(n-1) (Superfactorials).

Crossrefs

Cf. A060946 = Trace of Vandermonde matrix of numbers 1, 2, ..., n.
Cf. A000178 = Superfactorials: product of first n factorials.

Programs

  • Mathematica
    Table[ n + Sum[ (i^n-1)/(i-1), {i,2,n} ], {n,1,25} ]

Formula

a(n) = Sum_{i=1..n, j=1..n} i^(j-1).
a(n) = n + Sum_{i=2..n} (i^n-1)/(i-1).

A276455 Primes of the form Sum_{k=1..n} k^(k-1).

Original entry on oeis.org

3, 701, 45269999
Offset: 1

Views

Author

Robert C. Lyons, Sep 06 2016

Keywords

Comments

Searched up to n = 5000.
a(4) has 38019 digits (1973212031 ... 7493445627) and corresponds to n=9553. - Robert Price, Sep 23 2016; [number of digits in a(4) corrected by Jon E. Schoenfield, Nov 06 2016]
No other primes corresponding to n < 80000. - Robert Price, Mar 17 2017

Examples

			3 is in the sequence because 3 is prime and 3 = 2^1 + 1^0.
701 is in the sequence because 701 is prime and 701 = 5^4 + 4^3 + 3^2 + 2^1 + 1^0.
45269999 is in the sequence because 45269999 is prime and 45269999 = 9^8 + 8^7 + 7^6 + 6^5 + 5^4 + 4^3 + 3^2 + 2^1 + 1^0.
		

Crossrefs

Primes in A060946.

Programs

  • Mathematica
    Select[Accumulate[Table[n^(n-1),{n,100}]],PrimeQ] (* Harvey P. Dale, Apr 13 2020 *)
  • Sage
    sum = 0
    seq = []
    max_n = 2500
    for n in range(1, max_n+1):
        sum += n^(n-1)
        if is_prime(sum):
            seq.append(n)
    print(seq)

A349928 a(n) = Sum_{k=0..n} (k+n)^k.

Original entry on oeis.org

1, 3, 20, 246, 4481, 107129, 3157836, 110504876, 4473749677, 205615442135, 10574135574388, 601527803412298, 37500537926181449, 2542321872054610333, 186209553386691383388, 14653121207168215024624, 1232879877057607865696085, 110444572988776439826640683
Offset: 0

Views

Author

Seiichi Manyama, Dec 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k + n)^k, {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k+n)^k);

Formula

a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Dec 06 2021
Showing 1-9 of 9 results.